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Abstract—Point set registration presents unique significance
in Lidar-based intelligent vehicle localization and mapping.
It involves registering point sets of the same scene observed
from different positions by determining their relative spatial
transformation. However, due to the noise and outliers in the
point sets and initial misalignment, existing methods suffer from
the issues of low accuracy or large computational cost. In this
paper, we propose a novel Bayesian state space model to describe
the sequential point registration problem. Specifically, we specify
the transformations to be the latent states and further assume
that they vary smoothly across time. The point clouds are
represented as Gaussian mixture models that change accordingly
with the transformation. We develop a stochastic variational
Bayesian inference algorithm to learning the distributions of the
transformation, which automatically strikes a balance between
mapping every two consecutive point clouds and the temporal
smoothness of the transformation. Experimental results based
synthetic data show that the proposed variational Bayesian point
set registration (VB-PSR) algorithm achieves higher accuracy
with comparable or less time and resources, in comparison with
the state-of-the-art methods.

I. INTRODUCTION

In autonomous driving, a robot needs to locate itself while
simultaneously building the environmental map through sen-
sors’ perception. This simultaneous localization and mapping
(SLAM) process generally consists of two parts: the front
end and the back end. The front end performs frame-by-
frame pose estimation, while the back end refines this ini-
tial solution by correlating observations. Therefore, accurate
odometry resulting from the front end is crucial for the ve-
hicle to work smoothly and efficiently. Compared with visual
odometry (VO), Lidar odometry (LO) is of higher accuracy
and better stability, especially in the outdoor environment. The
acquisition of relative pose between every two consecutive
Lidar point clouds is referred to as point set registration.

According to the transformation type, point set registration
can be classified as rigid and nonrigid. Given two point
sets, the rigid registration only consists of translation and
rotation, whereas the nonrigid typically involves nonlinear
transformation. In the context of SLAM applications, here we
focus on the rigid registration problem.

The substantial literature on rigid point registration can be
classified into three categories: distance-optimization-based,
probability-based, and filtering-based methods.

The distance-optimization-based algorithms estimate the
transformation by finding the correspondence between the
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points in every two point clouds (i.e., frames or scans). Among
all algorithms in this group, the iterative closest point (ICP)
algorithm [1] stands out due to its simplicity and efficiency.
According to an estimated transformation, ICP maps the first
point cloud onto the second one and establish the correspon-
dence between the points from the two clouds by associating
every point in the first cloud with the one in the second cloud
that is closest in the distance. The transformation is further
updated such that the distance between the pairs of points
with correspondence is minimized. These two steps are then
iterated until convergence. The computational complexity of
ICP is only O(MDlog(M D)), where M is the number of
points in the template point set, and D is the dimension of
the point space. However, the point matching process in ICP
is susceptible to the initial guess of the transformation and the
noise and outliers that often exist in the point frame.

As a remedy to the aforementioned problems, the second
group of methods, namely probability-based methods, abandon
the point-wise registration in the distance-optimization-based
algorithms, and instead represent point sets by probability
distributions. One popular approach in this group is the normal
distributions transform (NDT) algorithm [2]. In this algorithm,
the points in the first cloud are rasterized into grid cells. Each
grid cell is associated with a normal distribution that locally
models the distribution of the points. The transformation is
then estimated by maximizing the likelihood of the second
point cloud after being mapped to the space of the first cloud
with regard to (w.r.t.) the normal distributions in the first cloud.
The computational complexity of NDT is O(K D log(K D)),
where K is the number of grid cells. Unfortunately, the perfor-
mance of NDT is sensitive to the chosen grid size. To mitigate
this issue, the Coherent Point Drift (CPD) method proposed
in [3] describes the entire point cloud using a Gaussian mixture
model (GMM) instead of manually allocating the points into
grid cells. The resulting computational complexity of CPD is
O(MD). As an alternative, both point clouds are modelled
by GMMs in [4], [S]. The transformation is then determined
by maximizing the similarity between the first GMM after
transformation and the second one.

On the other hand, filtering-based methods deal with the
noise and outliers by formulating the point registration prob-
lem as a filtering problem [6]—[9]. In the filters, the states are
the updated transformations as the algorithms proceed, and
the observation is fixed as the reference point cloud (i.e., the
second point cloud). White Gaussian noise is added to both
the state transition and the observation model such that the
noise and outliers in the point clouds can be well described.
Due to the nonlinearity in the observation model, unscented



Kalman filters [6], particle filters [7], cubature Kalman filters
(CFK) [8], and split covariance intersection filter (CSCIF) [9]
are exploited to update the transformation given the reference
point cloud. Although filtering-based methods achieve higher
accuracy than distance-optimization-based methods, they are
more computationally burdensome. For instance, the computa-
tional complexity of CKF and CSCIF is O(M?3D?). The high
computational cost is the biggest hurdle in applying filtering-
based methods to real-world SLAM problems.

In this work, we propose a novel state-space model (SSM)
for point set registration. To handle the noise and outliers, we
first describe all point clouds by GMMs as in the probability-
based methods. We then regard the transformations across time
as the latent states, and assume that the current transformation
can be decomposed as the sum of the previous transformation,
the previous acceleration on both translation and rotation, and
white Gaussian noise. Given the prior information, we further
assume that the shape (i.e., the density) of the GMM of the
current point cloud equals the shape of the GMM of the
previous point cloud after transformation plus white Gaussian
noise, and refer to it as the observation model. In other words,
by solving the SSM, we aim to find the transformation that
maximizes the similarity of the two GMMs given the prior
information of the transformation. Instead of checking the
similarity of the two GMMs in the entire point space, we use
the quadrature points as representatives, thus further reducing
the computational effort. To learn the latent states given
observations, we develop an efficient stochastic variational
Bayes inference algorithm. The complexity of the proposed
method is O(LP), where L is the number of quadrature points
which is a small number in 2D and 3D spaces (L < 100). The
proposed SSM operates differently from the existing filtering-
based methods [6]-[9] which artificially treat the iteration
number in their algorithms as time.

We simulate data from both 2D and 3D registration sce-
narios, and benchmark the proposed method against the ICP
[1], NDT [2], CPD [3], and CSCIF [9] method. The results
demonstrate that the proposed method achieves higher accu-
racy with comparable or less computational time and resources
in comparison with the benchmark methods.

The rest of this paper is organized as follows: the Bayesian
formulation of the registration problem is introduced in Sec-
tion II; the proposed SVBI solution is presented in Section
III; experimental results are shown in Section IV; we offer
concluding remarks in Section V.

II. BAYESIAN FORMULATION OF POINT REGISTRATION

Given the model set U = {uj,us,...,upr} and the scene
set Z = {z1,29,...,2zy} in RP, the objective of point
registration is to find the relative transformation between the
two sets, which is defined as Z = T (U, x). Specifically, x is
the transition vector and defined as [x?; 2%], where =’ is the
translation vector while £? encodes the rotation information.
As such, for every point w; in U, its correspondence in
the space of Z given the alignment x can be computed
as R(z%)u; + x!, where R is the rotation matrix that is a
nonlinear function of ?.
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Fig. 1. Dynamic Bayesian Network of the point sets generation in a sequential
system.

To overcome the disadvantages of point-wise registration,
we adopt the probability-based methods and describe each
finite point set using a GMM as in [4], [5]. As a result,
the distribution of the point cloud U and Z can be re-
spectively expressed as Gy (u) = Y i~ wN(u; p;, X;) and
Gz(2) = X0 NN (2504, E)), where N (u;py, %) is a
Gaussian distribution with mean p; and covariance ¥; and w;
A; denote the weight of component i. The GMMs are obtained
by clustering the points in a cloud into several Gaussian-
distributed components [10]. Now, the registration between Z
and U amounts to aligning Gz to Gyy. As mentioned in [3]-
[5], such probabilistic representations are robust to noise and
outliers in the point sets.

Furthermore, in the case where the point cloud is very dense
(i.e., M and N are large), characterizing the point cloud by
a mixture of several Gaussian distributions can provide an
efficient but reliable tool for downsampling the point set.

After modelling the point clouds by GMMs, let us turn our
attention to construct an SSM for point set registration across
time. Suppose that the point sets are all generated from a
sequential system, e.g., the Lidar-based SLAM. The proposed
SSM can then be expressed as:

T =224 —x4_2+ 0y (1a)
Gz(y) = T(Gu,m:)(y) + er(y), Yy eRP  (Ib)

where T (Gu, z)(y) = >iv, wiN (y; Ru; +t, RS, RT) is the
density function of the GMM for Gy after the transformation
T, y is the argument of the density function, d; and € (y)
denotes motion and observation noise. Note that the motion
function (1a) can be equivalently written as

Ty — Ty = Ty—1 — Ty—2 + Oy, )

where ;1 — x;_2 can be regarded as the acceleration at
time ¢ — 1. We can tell from the above expression that the
motion model favors the case where the acceleration is time
invariant. Viewed another way, it prefers 2x;_1; —x; —x;—_2 to
be close to zero, which is the curvature at x;_;. As such, x;
will change smoothly across time. Such priors are frequently
used for smoothing signals in the literature of statistical signal
processing [11]. On the other hand, the observation model can
be interpreted as the density of the point set Z equals the
density of transformed U plus independent Gaussian noises
at all points y € RP. Assuming that §; ~ N'(0;; ' Ip) and
e:(y) ~ N(0; B;71), where o and B; are the inverse variances
and Ip is a P x P identity matrix, the maximum a posterior
estimate of x is given by:

T = argmin oy||@; — 2@ 1 + wt_gHg
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In other words, by solving the SSM, we select the transforma-
tion x that maximizes the similarity between the two GMMs
while considering the smoothness of x; across time. We notice
that the second term in (3) is the L2 distance between two
distributions. It has been pointed out in [4] that L2 distance is
more robust to outliers and local minima than other distances,
such as KL divergence. Although the integration in the L2 dis-
tance is tractable, it is both easier and computationally feasible
to approximate this integration numerically, as well as estimate
the inverse variance (3; following the Bayesian paradigm. Ex-
plicitly, we utilize the Gauss-Hermite quadrature rule, which
is shown to be accurate for the integration over GMMs in [12].

Suppose that we use L quadrature points {y1, - ,yr},
whose associated weights are {w1,--- ,wr}. For brevity, we
use the following notation: z; = [G.(y1), -+ ,G.(yr)]"

hi(ze) = [T(Gu, ) (Y1), T(Gu, ) (yr)]”, and w =
[wy, -+ ,wr]. As such, the observation model can be written
as:

2y = hy(xs) + ¢4, 4

where ¢; ~ N(0; 3; [diag(w)] '), and diag(w) is a Lx L di-
agonal matrix with w on the diagonal. Note that the quadrature
points downsample the observation space and so will speed
up the inference process. Similarly, existing methods [1]-[3],
[8], [9] also downsample the point sets to make the algorithm
scalable to the dense cases. As mentioned in Section I, these
methods allocate the points into grid cells and replace the
points in a cell by the mean of the point distribution in this
cell. Such downsampling approach, however, is sensitive to
the grid size and the noise in the point sets. By contrast, the
proposed method can handle noisy data, thus model the point
sets better.

Accordingly, both the motion and observation function can
be described from a probabilistic perspective:

Z o
p(@e|Ti—1, T2, 1) X af expq — 5

(@1 — 21 — 21-9))7 (@1 — (2011 — T1-2) } )
P(yt|wt,5t) X

L Br :
B2 exp {_2’(zt — h(a,)) " diag(w)(z; — h(act))} . (6
In (6), if we consider all y € R” and compute the L2 distance
analytically, L — oo and so the observation distribution is not
well defined. Since we intend to infer 8; from the data, we

resort to the above quadrature rule to choose L points from
RP.

III. STOCHASTIC VARIATIONAL BAYES INFERENCE

Given the SSM, our ultimate goal is to estimate the transfor-
mation x; and the noise parameters «; and 3; given the obser-
vations z; and the previous states x;_; and x;_». Concretely,
we exploit the empirical Bayes framework, that is, the point

estimates of «; and ; is yielded by maximizing their likeli-
hood p(z:¢|@s—1,1—2, s, B;) and then the posterior distribu-
tion of x; can be expressed as p(x¢|z¢, Ti—1, Ti_2, ay, Br).
Unfortunately, both of these two distributions cannot be
computed analytically, due to the strong nonlinearity in the
observation model (4). To get around this problem, we max-
imize the evidence lower bound (ELBO) £ of the likelihood
p(zt|Te—1, T1—2, ay, B;) instead:

r_ /q(mt)log p(zta$t|$t—1a$t—2,at76t)dmt 7
Q($t>
< logp(z¢|Ti—1, Ti—2, t, Br) ®)

The equality holds if and only if

Q(mt) = p(mt‘zt;mt—lamt—QaO‘taﬂt)'

As mentioned before, p(x¢|2z:, Ti—1, Ti—2, ay, B) is not avail-
able. Thus, we follow the variational Bayes approach and
seek a tractable g(a;) and point estimates of a; and f; to
maximize £. More specifically, we set g(x;) to be Gaussian,
that is, q(x¢) = N(x; e, C:CF), where C; is the Cholesky
decomposition of the covariance of ¢(x;). As a result, we can
equivalently parameterize x; as:

z; = Cre + py, )

where e ~ N(0, Ip) follows a standard normal distribution.
Here, we leverage the mean-field approximate and assume that
q(x:) has a diagonal covariance matrix. As a consequence, C;
is also a diagonal matrix. The resulting ELBO can then be
written as:

L =E,[logp(ze, @i|Ti—1, T2, ar, Bt)] + Hlg(x,)]  (10)
:Eq[log(det(ct)p(zt,C’te + ,ut)|mt—17mt—27ata5t))}
+ log det Cy + H]g(e)], (11)

where E,[g(x,)] denotes the expectation of g(x;) over g(x;),
H denotes the entropy of a distribution, and ¢(e is the density
function of e. In (11), H[¢(e)] is a constant, and log det C;
can be simplified as logdet Cy = Zf;l log[Cy)ss, since Cy is
a diagonal matrix.

In order to maximize the ELBO L, we follow the gradient
ascent method. Therefore, we compute the gradient of £ w.r.t.
e, Cy, oy, and By as:

VL = Egiey [~0uO0 + B (V) 1] (12a)
Ve, £ =Eye) [(—Os + Br(Va, he(x:)) W) o €] + Ac,

(12b)

P 1
Vo, L= S 5Eo(e) (0] (12¢)
L= L 11@ VAR 12d
Vs, =5 2 sle) (Ui W], (12d)

where o denotes elementwise product, Ac, denotes a diag-
onal matrix with [&u, ’Ti’}?} on the diagonal, ©, =
Ty — 2$t71 + 2o, and \I/t = dlag(w) (Zt — ht(:ct)) The
above gradients, however, cannot be calculated in closed form,
due to the intractable expectations. Instead, we replace the
exact gradients in (12a) by stochastic gradients to maximize
L. Stochastic gradients are unbiased estimates of the exact



Algorithm 1: Stochastic variational Bayes inference.

Data: z;, ;1,9

Result: x;

Initialize ;Lﬁo), C?.ad, BY, k=0 ;

while convergence criterion is not met do

k=k+1;

e~ d(e);

xF = CFe + uF,

For a variable vy ~ {p, Uy, o, B},

Calculate its stochastic gradient (V, £)®*);
S 0 0o

end

gradient that can be evaluated in a computationally cheap
manner. More precisely, we provide unbiased estimates of the
expectations over ¢(e) by drawing one sample from ¢(e) and
evaluating the value of the functions inside the expectation
based on this sample. As an example, the unbiased stochastic
gradient corresponding to (12a) can be written as:

Vi L~ -0 + ﬂkvmthtth\Pt (13)

The stochastic gradients of C;, oy, B; can be computed in
a similar fashion. Equipped with the stochastic gradients, we
maximize £ following Algorithm 1, where pgk) is the step size
in iteration k. According to the Robbins-Monro theorem [13],
the stochastic gradient ascent algorithm in Algorithm 1 is

guaranteed to converge if the step sizes satisfy ), pgk)

=00
and >, pgk)Z < oo. In practice, we employ ADAM [14]
to determine the step in every iteration. Also, we adopt the
control variate in [15] and remove the score function term in
the gradients as in [16] so as to reduce the variance of the
stochastic gradients and to further speed up the convergence.
The computational complexity of the proposed method is
O(LP). One merit of using a stochastic gradient method is
that it can easily escape from shallow local maxima [18], as
the stochastic variational Bayes inference algorithm can be
interpreted as a simulated annealing-type method. As opposed
to the proposed method, the existing methods [1], [4], [6]-[9]
are susceptible to local maxima. Furthermore, in comparison
with the filtering-based methods [6]-[9], the computational
complexity of the proposed method is much lower, thus
making it suitable for real-time applications. After obtaining
the transformation x; at time ¢, we then proceed to time ¢+ 1.
The overall variational Bayesian point set registration (VB-
PSR) algorithm is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, we benchmark the proposed VB-PSR
method with the commonly-used ICP [1] and NDT [2],
the representative probability-based method CPD [3], and
the recent filtering-based method CSCIF [9]. We simulate
synthetic data from the proposed SSM in (1). Specifically,
the initial translation and angular velocity on each axis at
t = 1 are set to be 0.05 m and 0.02 rad, while the
translation and angular acceleration on each axis are set to be
0.005 m/(At)? and 0.002 rad/(At)?. For the hyperparam-
eters of the additive Gaussian noise in the motion function,

Algorithm 2: Variational Bayesian Point Set Registration
(VB-PSR).
Data: Template point sets U;.7, Scene Point sets Z;.p
Result: ;.1
Estimate x; and xo;
for t < 3 to T do
Represent U; and Z; by GMMs Gy, and Gz, ;
Calculate the quadrature points of Gz, ;
Initialize x; as 2x;_1 — Ti—o ;
Employ Algorithm 1 to refine the initial estimation;
Output xy;
end
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Fig. 2. The ground truth of the trajectory of the vehicle in the 2D (a) and
the 3D (b) case for one data set.

we set oy = 1/(0.005 m)? for the translation vector and
a; = 1/(0.002 rad)? for the angles. We consider both 2D and
3D case. The vehicle starts from the origin point. Examples
of the trajectories in these two cases are shown in Fig. 2(a)
and 2(b) respectively. Next, we proceed to generate point sets.
The initial GMM at ¢t = 1 is assumed to have two equally-
weighted components. The mean and covariance of the GMMs
at time t is changed according to the rigid transformation
specified by x;. We then generate the point cloud at time ¢ by
sampling from the corresponding GGM. Note that point sets
produced in such manner contain noise and outliers. We set the
number of points as 5x 103 and 1x 10° for the 2D and 3D case
respectively. The number of frames 7" = 50. In particular, for
NDT, we set the grid step to be 0.5 m. Additionally, for CSCIF,
we downsample the point sets using a grid filter with grid size
1.5 m, since CSCIF is only applicable to low-dimensional
problems with small point sets. We do the same for CPD in
the 3D case using a grid filter with size 0.5 m. For all methods,
the transformation a; at t is initialized as x;_1 — 2x4_o. All
results presented here are averaged over 100 data sets.

We first depict the RMSE (root mean square error) between
the true and estimated transformation x; as a function of time
t in Figs 3(b)-3(e). It clearly shows that the RMSE of the
proposed VB-PSR achieves the smallest RMSE in almost all
cases. By contrast, the RMSEs of CSCIF and CPD are several
orders of magnitude and increase sharply with time ¢. This is
probably because the downsampling, especially using a quite
large grid step size, can cause a serious information loss,
and further deteriorate the performance. However, the sampled
quadrature points in VB-PSR can approximate the GMMs,
which summarize the whole datasets, quite perfectly. On the
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Fig. 3. The logarithm of the RMSE for both the translation vector a* and the rotation vector 2% as a function of time ¢ resulting from all methods in both
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TABLE I
THE AVERAGE RUNTIME FOR ALL METHODS IN 2D AND 3D CASES.

Algorithm ICP NDT CPD CSCIF  VB-PSR
2D case 0.03 s 0.58 s 053s 17.82s 0.29 s
3D case 0.63s 2351s 164s 4835s 0.88 s
1 006
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Fig. 4. The average memory (a) and CPU (b) usages of all the test methods in
2D and 3D cases without downsampling. CPD and CSCIF run out of memory
in the 3D case.

other hand, ICP and NDT perform better than CSCIF and
CPD, since they operate on the full pointset. Unfortunately,
both ICP and NDT are sensitive to the initial misalignment,
and sometimes get stuck in inadequate solutions. For example,
ICP has a poor performance in the beginning frames of the 3D
case. In contrast, the stochastic gradient method employed in
VB-PSR is more capable of escaping from the local maxima
and thus having higher accuracy.

Next, we present the average registration time per frame for
all methods in Table I. ICP is the fastest, due to its simplicity
and low computational complexity. The proposed VB-PSR
performs the second best and its computational time is almost
the same with ICP in the 3D case. Note that in practice we
typically deal with 3D problems instead of 2D. In contrast,
CSCIF takes much longer time than other methods, due to its
high computational complexity. Here, to assure the accuracy,
the grid size we choose for NDT is relatively large, resulting
in a heavy computational cost in the 3D case [8].

Finally, we show the memory and CPU usage of all methods
without downsampling in Fig. 4. It can be observed that VB-
PSR enjoys low CPU and memory usage. Thus it provides a
useful tool in practice.

V. CONCLUSIONS

In this paper, we proposed a novel Bayesian state space
model for point registration problem. The point sets were

described by GMMSs. The transformation (i.e., the states) was
assumed to change smoothly across time in the SSM, while
the observation was the density of the GMM at selected
quadrature points given the transformation. Efficient stochastic
variational Bayes inference algorithm was derived to learn the
model. Numerical results showed that the proposed method
can achieve higher accuracy with a reasonable amount of
computational time and resources. In future work, we will
test the proposed method on real-life data in intelligent vehicle
localization and mapping tasks.
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