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Abstract In this paper, we investigate the large-scale

synchrony of EEG oscillatory bursts, during stimulation by

a flickering square of light. Whereas most studies focus on

averaged raw EEG responses, this study considers oscil-

latory events within EEG of single trials, which leads to

various new insights. We recorded EEG signals before,

during and after stimulation by a flickering square of light

in medium (16 Hz) and high frequency (32 Hz) ranges.

Similar oscillatory bursts, to those observed in spontaneous

EEG, can be found in single-trial synchrony of steady state

visual evoked potentials (SSVEP). These bursts are

extracted from the EEG of single trials using bump mod-

eling. Stochastic event synchrony method is applied to

those events, which quantifies synchronies of oscillatory

bursts on a large-scale basis. Those oscillatory patterns

have a significantly higher degree of co-occurrence during

SSVEP, uncorrelated with ongoing signal synchrony. It

means that EEG oscillatory patterns are presumably an

outcome of brain activity, rather than a mere side effect of

ongoing EEG. They undergo a consistent reorganization

during visual stimulation, preferentially along the visual

pathway, depending on magno or parvo stimulations.

Flickering stimuli may induce some cognitive side-effects

depending on the stimulation frequency.

Keywords SSVEP � Bump modeling � SES � Synchrony �
Oscillations � Wavelet

Introduction

Oscillatory neuronal networks allow a unique interdisci-

plinary platform to study neurocognitive and dynamical

phenomena (Rojas-Lı́bano and Kay 2008). EEG data, though

of high relevance in cognitive research, poses a number of

technical problems as it is very noisy and shows strong non-

stationarities (Schinkel et al. 2007). Consequently, the

structural organization and associated functional role of

electroencephalographic (EEG) oscillations are still far from

being completely understood. The complexity of EEG

oscillations can be illustrated by the lack of consensus in

EEG analysis methods (Kiebel et al. 2008). Brain oscillatory

patterns have complex time, frequency and space structure.

Synchrony among oscillating neural assemblies is a plausi-

ble candidate to mediate functional connectivity, and

therefore to allow the formation of spatiotemporal repre-

sentations (Le Van Quyen 2003; Cosmelli et al. 2007). Such

neural structures can be considered as distributed local net-

works of neurons, transiently linked by reciprocal dynamic

connections (Varela et al. 2001). Together, distant neural

assemblies are involved in collective dynamics of
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synchronous neuronal oscillations (Cosmelli et al. 2007),

taking the shape of oscillatory patterns.

Cortical dynamics does not follow continuous patterns,

but instead operates in steps, or frames (Freeman 2006):

EEG is constituted of ongoing stationary oscillations, and

non-stationary transient bursts. This bursts are local oscil-

latory events, present in single trials, and appearing as

transient oscillatory synchronizations (TOS) or transient

oscillatory desynchronizations (TOD). These synchroniza-

tions and desynchronizations correspond to the presence or

absence of a coherent neural assembly, respectively (Başar

et al. 1999). EEG activities are usually analyzed using

either time or frequency representations of event related

potentials (ERP), which can be interpreted as the reorga-

nization of the spontaneous brain oscillations in response to

the stimulus (Başar 1980; Başar et al. 1999). The origin of

these ERP, obtained by signal averaging, is a matter of

debate. Three main theories compete for the interpretation

of what constitutes an ERP: additive effect of changes

occurring in all trials, transient phase resetting of ongoing

activity (Klimesch et al. 2007; Moratti et al. 2007), or

baseline shift of ongoing activity (Nikulin et al. 2007).

Nevertheless, ERP were observed in several studies to have

visible outcomes even in single trials (Effern et al. 2000;

Quiroga et al. 2001). In the present investigation, we are

not interested in the averaged outcome of stimulations: the

brain itself processes information at the single trial level

(hence it processes TOS and TOD, not ERP).

In continuity with these theories, we would expect that

organized oscillatory bursts (TOS and TOD) in EEG time–

frequency activity (i.e., local synchronies) should play a

specific functional role, distinct from the stationary ongo-

ing EEG activity (activity not organized in bursts,

representing 70–80% of the signal). Ongoing EEG was

studied for years, and its high entropy suggests that it is

likely to carry significant information. However, ongoing

EEG and oscillatory burst were never compared on a large-

scale basis (in distant electrodes). The first step to inves-

tigate this hypothesis is to demonstrate, using a well-know

paradigm, that large-scale synchrony of ongoing EEG is

consistently uncorrelated with large-scale synchrony of

oscillatory bursts. This will be the purpose of our study: we

investigate here the large scale dynamics of local syn-

chrony patterns, during flickering light stimulation. During

this stimulation, we will compare for each single trial these

dynamics to those from ongoing activity. Our assumption

is that these two activities will differ significantly.

Steady-state visual evoked potentials (SSVEP) is a well-

known experimental paradigm in neuroscience. When

averaged over many trials, SSVEP are characterized by

constituent discrete frequency components remaining clo-

sely constant in amplitude and phase over a long

stimulation time (Regan 1989). It is important to point out,

however, that the discrete frequency component does not

appear constant in single trials; it only appears so after

averaging over a sufficient number of trials. In a single trial

one observes bursts of oscillatory activities (cf. Fig. 2)

during flickering light stimulation, similar to those that can

be observed in spontaneous EEG.1 In other sensory

modalities, steady state potentials have also been docu-

mented: in the auditory system (Stapells et al. 1984); or

similarly in the somatosensory system (Snyder 1992).

Nevertheless, there is generally little known about the trial-

by-trial detail of oscillatory patterns dynamics in SSVEP.

Broadly speaking, investigations concerning the dynamics

of SSVEP sources and topography are not sufficiently

advanced (Nishifuji et al. 2006): studies in neuroscience

use only classical signal processing methods to investigate

the SSVEP responses—such as superposition, averaging,

frequency analysis (narrow band Fourier power), or cor-

relation analysis. Such methods are applied to the entire

EEG signals. As both the ongoing EEG and oscillatory

patterns are simultaneously analyzed, consequently the

study of oscillatory patterns dynamics independently from

ongoing EEG is not possible. Using recent modeling

methods,2 we will observe synchrony of single trials

oscillatory bursts, uncorrelated with ongoing signal, in the

SSVEP elicited by a flickering light stimulus. Our obser-

vations prove our assumption to be correct.

Methods

Whereas efficient tools for time–frequency analysis were

used proficiently for implanted EEG (or ECoG, Chen et al.

2007), rest EEG (Vialatte et al. 2005; Chen et al. 2008),

evoked potential or event-related responses investigation

(Tallon-Baudry et al. 1996; Ohara et al. 2004; Vialatte

et al. 2008c, 2009), time–frequency analysis of SSVEP

were unfortunately seldom investigated (Cui and Wong

2006). Oscillatory patterns in the SSVEP elicited by a

flickering light stimulus are extracted using a sparse

‘‘bump’’ model of the most prominent time–frequency

oscillatory events (Vialatte et al. 2007, 2008a). Pairwise

synchrony between all possible pairs of bump models is

quantified with the method proposed in (Dauwels et al.

2007, 2009), referred to as stochastic event synchronization

(SES). We then compare these results with a more general

EEG synchrony measure using magnitude squared coher-

ence (Kay 1998): coherence measures synchrony over the

whole EEG signal, tacking into account both oscillatory

bursts and ongoing EEG. All computations and statistical

1 Spontaneous = in rest EEG (eyes opened or closed).
2 This paper is the first report in journal, extending results that we

previously presented in a conference (Vialatte et al. 2008b).
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analysis were performed using MATLAB (The Math-

Works, Inc.).

EEG recordings

The experiments were conducted in accordance with the

Policies on the Use of Animals and Humans in Neuroscience

Research, revised and approved by the Society for Neuro-

science in January 1995, and in strict accordance with the

Policy on Ethics approved by the Society for Neuroscience

in November 1989, and amended in November 1993.

Human scalp EEG was recorded in a dark room, while

the subject was exposed to flickering light. More precisely,

the stimulus consisted of a single flashing white square of

size 5 cm. The flickering frequency was constant (16 or

32 Hz) in order to produce a form of steady-state response

of the human visual system (SSVEP). EEG data was

recorded from 64 sites on the scalp, based on the extended

10–20 standard system. A Biosemi system with average

reference was used. Sampling frequency was set to

2,048 Hz, with offline high pass filter with cut-off fre-

quency 3 Hz, and low pass filter with cut-off frequency

45 Hz. Twelve second epochs were recorded with a 64

channel montage. A single trial had the following structure:

before stimulation (3 s, labeled thereafter ‘‘Before’’ per-

iod), during stimulation (5 s, labeled thereafter ‘‘During’’

period) and a post-stimulation period (4 s labeled thereafter

‘‘After’’ period), during which EEG resumed to the base-

line activity. A total of 102 records, 51 with 16 Hz

stimulation and 51 with 32 Hz stimulation, were recorded.

Data were obtained from a single subject.

Time–frequency sparsification

The purpose of this step is to extract local synchrony pat-

terns. These patterns are to be found in the time–frequency

structure of EEG dynamics oscillations—time–frequency

analysis is especially suitable for this task (Le Van Quyen

and Bragin 2007). After time–frequency analysis, oscillatory

bursts are extracted using bump modeling, which extracts

only the most prominent and organized time–frequency

patterns (Vialatte et al. 2007; Dauwels et al. 2008). Bumps

were extracted using the ButIf toolbox (Vialatte et al. 2008a).

As a first step, wavelet time–frequency maps are com-

puted using complex Morlet wavelets. The (continuous)

wavelet transform W of a time series x is obtained as:

Wðk; sÞ¼D
X

l

x lð Þw� l� k

s

� �
;

where w(k) is the (complex) ‘‘mother’’ wavelet, s is a

scaling factor, and * stands for complex conjugate. In this

paper, we used the complex Morlet wavelet:

wðkÞ ¼ A � exp
�k2

2r2
t

� �
� expð2ipf0kÞ;

where rt
2 and f0 jointly determine the number of

oscillations in the wavelet. The complex Morlet wavelet

results in the optimal resolution in time and frequency; it

has also proven to be well-suited for EEG signals (Tallon-

Baudry et al. 1996; Ohara et al. 2004; Herrmann et al.

2005; see also Le Van Quyen and Bragin 2007 for review).

Here, time–frequency representations were restricted to the

frequency ranges of SSVEP, i.e., 15–17 Hz (for 16 Hz

stimulation) or 31–33 Hz (for 32 Hz stimulation), with

adequate time and frequency borders for bump modeling

(Vialatte et al. 2007; Dauwels et al. 2008). Epochs were

analyzed before, during and after stimulation. Frequency

dependent z-score normalization (Browne and Cutmore

2004; Vialatte et al. 2009) was applied comparatively to

the pre-stimulus period of each trial:

zðf ; tÞ ¼
Wðf ; tÞ � lf

rf

where lf and rf are the mean and standard deviation,

respectively, of the wavelet map W, computed over the

pre-stimulus period at frequency f. The resulting z-score

maps z(f, t) are approximated as a sum zbump of basis

functions b (‘‘bumps’’) with parameters hk (for more details

about bump modeling, see Vialatte et al. 2007):

zðf ; tÞ ¼ zbumpðhÞ ¼
XNb

k¼1

b hkð Þ;

where h ¼ h1; h2; . . .; hNb
ð Þ: This decomposition represents

the most salient events in the z-scored map z(f, t); these can

most probably be attributed to the local organization of

brain activity (local synchrony). We used half ellipsoid

basis functions b, the parameters hk are vectors of five

parameters: position in time and frequency, width in time

and frequency, and amplitude. After bump modeling, the 64

electrodes were clustered into a set A of nine areas

(occipital, parietal left and right, temporal left and right,

central, frontal left and right, and prefrontal electrodes) by

means of the aggregation algorithm described in (Vialatte

et al. 2007). This reduces the complexity of data analysis

and increases the robustness of our results against statistical

fluctuations, since we consider fairly large brain regions.

Moreover, this strategy reduces considerably the risk of

measuring volume conduction effect instead of synchrony.

Stochastic event synchrony

Next we need to evaluate in each single trial the large-scale

synchrony of the oscillatory patterns extracted. We deter-

mine the similarity of all pairs (Ai, Aj) of aggregated bump
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models (Fig. 1). To this end, we apply the stochastic event

synchrony method (SES; Dauwels et al. 2007), which

quantifies to which extent two bump models zA and zB can

be aligned. SES consists of the triple (q, d, r); these three

numbers jointly describe the similarity of two bump

models:

– a fraction q of bumps appear in one bump model but

not in the other (‘‘spurious’’ bumps).

– Other bumps are present in both models at slightly

different positions on the time–frequency map (‘‘non-

spurious bumps’’).

– We denote by d and r the average delay between pairs

of non-spurious bumps (global jitter) and the standard

deviation of this offset (local jitter), respectively.

The solution is determined by maximum a posteriori

estimation.

In our previous investigation (Vialatte et al. 2008b), we

used the actual number of bumps modeled before and

during stimulation, and obtained similar results. The

observed effect could, however, be due to the increase of

the number of bumps, biasing the SES computation. In

order to avoid such bias, in the present study, SES was

applied with a constant number of bumps for all conditions

(the seven-first bumps per period). The observed results are

robust to parameter changes.3

Statistical analysis

All statistics were corrected using a Bonferroni correction

for tests (see e.g., Vialatte and Cichocki 2008). We com-

puted the general average of all pairwise synchrony

measures (SES measures and coherence measures), for

each experimental conditions (before, during, after, for 16

or 32 Hz stimuli). This provided information of the general

synchrony depending on the experimental context—

answering the question: ‘‘is there synchrony during

SSVEP?’’ We used this measure in order to compare

synchronization effects between experimental conditions

(Before vs. During, Before vs. After, During vs. After)

using a Wilcoxon test. A similar approach was used with

ongoing synchrony (coherence measures).

Afterwards, we analyzed the synchrony for the nine

brain areas A (aggregation of the bump algorithm), using a

Wilcoxon test to compare all pairwise SES synchrony

measures (Ai, Aj) between all the areas. This provided

information about the brain topography of the synchroni-

zation effect, for SSVEP experimental conditions (Before

vs. During, During vs. After)—answering the question:

‘‘which brain areas are synchronized during SSVEP stim-

ulation?’’ This result was afterwards compared with the

topography of ongoing synchrony (coherence measure—

the algorithm used to regroup the coherence measure in

nine brain areas B can be found in annex). This strategy if

used to compare the topography of the effect.

A comparison with surrogate data was necessary in

order to control if the observed effect is an artifact of the

method. We generated 1,000 surrogate data sets by the

following two-step procedure: first a trial is selected ran-

domly, next the nine aggregated bump models of that trial

are shuffled, more precisely, the timing of the bumps in

those models is chosen randomly, uniformly within the

support of those models, the four other bump parameters

are left unchanged. We applied SES to each of those 1,000

surrogate data sets resulting each time in parameters q, d,

and r. We then compared the SES parameters obtained

from the real data to the parameters of the 1,000 surrogate

Fig. 1 Stochastic event

synchrony (SES). Two EEG

electrodes (A, and B) record

brain activity (EEGA and EEGB)

in their vicinity (a and b)

together with activity from

distant electrodes (b0). Locally

synchronous bursts of

oscillatory activity appear as

bumps in the time–frequency

domain. We are interested in the

synchrony (s) between those

events; we quantify this

synchrony by means of SES

3 Using less optimized parameters, we could observe lower P
values—they still remained highly significant (P \ 0.01).
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data sets (using general averages of the pairwise synchrony

measures).

Ongoing synchrony

We intend to measure how the ongoing EEG (the part of

signal rejected during bump modeling) is synchronized.

Because we extract the most prominent activities of EEG

signals during bump modeling, the best comparative syn-

chrony measure is magnitude squared coherence (Kay

1998), a measure large-scale synchrony when applied to

scalp EEG (see e.g., Duckrow and Zaveri 2005). The

magnitude squared coherence Cxy estimate is a function of

frequency with values between 0 and 1 that indicates how

well two time series x and y corresponds one to another at

each frequency f. The coherence is a function of the power

spectral density (Pxx and Pyy) of x and y and the cross

power spectral density (Pxy) of x and y:

Cxyðf Þ ¼
PxyðfÞ
�� ��2

Pxxðf ÞPyyðf Þ

Results

We observed that the z-score maps z(f, t) contain oscilla-

tory bursts before, during, and after flickering stimulation

(Fig. 2). In other words, spontaneous EEG as well as

SSVEP both contain non continuous oscillatory events. In

SSVEP (during stimulation) there tend to be more of these

events than in spontaneous EEG. In the transient regime

after stimulation, the number of events gradually decreases.

Fig. 2 Example of wavelet

time–frequency representation

of SSVEP in occipital area

(channel O2). The difference

between single trials (with

oscillatory patterns) and average

of 51 trials (with almost

continuous activity) is obvious

in both 16 Hz (left) and 32 Hz

(right) SSVEP

Fig. 3 Application of bump modeling and SES to SSVEP signals,

compared with magnitude squared coherence. Bumps are modeled

with central frequencies within 1 Hz of the stimulation frequency.

a z-scored wavelet transform z(f, t) (26–38 Hz) with reference in the

‘‘Before’’ period (top) and bump modeling (bottom) of a typical signal

with SSVEP at 32 Hz (single trial). b SES parameters computed

trial-by-trial for all signals at 32 Hz. c z-scored wavelet transform

(13–19 Hz) with reference in the ‘‘Before’’ period (top) and bump

modeling (bottom) of a typical signal with SSVEP at 16 Hz. d SES

parameters computed trial-by-trial for all signals at 16 Hz (single

trial)
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We determined EEG synchrony for each of the three

conditions (before, during, and after stimulation) by means

of magnitude square coherence and SES (Fig. 3). The

condition pairs ‘‘Before vs. During’’ and ‘‘During vs.

After’’ yield significant P values (P \ 0.01, Wilcoxon test)

for magnitude squared coherence, q and r. Those three

measures indicate that the synchrony is larger during

stimulation than before or after, more precisely, during

stimulation the magnitude squared coherence significantly

increases; on the other hand, q and r decrease significantly

(Fig. 4). The parameter d also decreases during the flick-

ering stimulation, but not significantly (P = 0.08). Note

that r captures fluctuations ‘‘within’’ a trial, whereas the

distribution of d reveals fluctuations ‘‘from trial to trial’’.

The parameter q measures synchrony in a similar way as

magnitude squared coherence—we could expect these two

measures to report correlated results if oscillatory bursts

and background EEG shared the same functional role. We

compared q values with magnitude squared coherence, no

correlation was found in any condition (Table 1). This is

illustrated by the scatter plots of the co-occurrence

parameter against magnitude squared coherence during

stimulation period (Fig. 5).

We computed the SES parameters for the surrogate data

sets. The parameter d has about the same values for the real

and surrogate data; in other words, this parameter turns out

to be of little relevance for this study. The parameters r and

q have clearly larger values for the surrogate data

(P � 0.01 with Mann–Whitney test) in each of the three

conditions (Before, During and After). This shows that the

organization of EEG oscillatory events is non-trivial and

interesting. Moreover, also for the surrogate data sets, the

parameters q and r decrease significantly during stimula-

tion, but the difference is less strong than in the real data.

Therefore, the reduction in q and r cannot only be

explained by the larger number of oscillatory events during

stimulation, it is due to an increase in synchrony of the

events (this effect cannot be explained by changes in

oscillatory power).

We studied the spatial organization of SES co-occur-

rences in the nine areas, showing the most significant

changes in the q parameter: we compared the pairwise

synchrony (Ai, Aj) between each of the set of nine brain

areas A of bump aggregation (Fig. 6). The propagation of

oscillatory burst co-occurrence during flickering stimula-

tion depends on the stimulation frequency (16 or 32 Hz).

After stimulation, the EEG oscillatory activity resumed

progressively its normal pace, but with a preference

towards trans-hemispheric (hemisphere to hemisphere)

reduction of co-occurrence.

This spatial organization was then compared with the

pairwise magnitude squared coherence (Bi, Bj) between all

brain areas of the set B * A. A distinct distribution is

shown by magnitude squared coherence (Fig. 7). The

propagation of oscillatory burst co-occurrence during

flickering stimulation depends on the stimulation frequency

(16 or 32 Hz), but in very similar locations. After stimu-

lation, the EEG oscillatory activity resumed progressively

its normal pace, but with a preference towards trans-

hemispheric (hemisphere to hemisphere) reduction of

synchrony, similar to what was observed with SES. This

means that after SSVEP, oscillatory activity remains

coordinated after the stimulation ends for a few seconds,

but with two distinct dynamics in both hemispheres.

Discussion

During a flickering light stimulation, we compared, for

each single trial, organized dynamics against those from

background (disorganized) activity. Our assumption was

that these two activities will differ significantly. We have

shown using SES that local oscillatory bursts display sig-

nificant patterns of large scale synchrony during flickering

light stimulation. We measured the background EEG syn-

chrony using a well-known measure, magnitude square

coherence.4 This synchrony significantly differs from

background activity as shown by their absence of correla-

tion (Table 1; Fig. 5); or by their differing spatial

distributions (Fig. 7 compared to Fig. 6). This proves our

primary assumption to be right.

We also showed that single trials of SSVEP are com-

posed by successions of rhythmic patterns. Earlier

investigations (Cui and Wong 2006) also revealed such

patterns in the time–frequency maps of single-trial EEG

during stimulation with flickering light. In contrast, if one

averages the EEG over a sufficient number of trials, one

can observe more constant and stable activity on the time–

frequency map, especially around the stimulation fre-

quency. While the overall oscillatory organization of EEG

remains normal during stimulation, a larger number of

oscillatory events is observed. In other words, we can still

observe segregated bursts of activity, but these oscillatory

bursts occur more frequently than in spontaneous EEG.

Furthermore, the synchrony of the oscillatory events

Fig. 4 Boxplots of the three SES parameters. ‘‘*’’ Represents

significant (P \ 0.01) differences using Wilcoxon test with Bonfer-

roni correction. ‘‘?’’ represent outliers

c

4 Comparisons of magnitude square coherence between rest and

stimulus conditions might be inaccurate if the signal to noise ratio

(SNR) is different in both conditions (Nunez and Srinivasan 2006). In

our case, however, we are not interested in proving the presence of

synchrony (‘‘if’’ question) but in its location (‘‘how’’ question). We

know that SSVEP propagates; we consequently assume that back-

ground synchrony is indeed present.
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increases during stimulation. These observations can be

interpreted as:

– a reorganization of the oscillatory patterns in the visual

system by the flickering stimulation, which propagates

from the visual areas to the whole brain.

– Or a quantitative increase of the brain activity at the

SSVEP frequency, coupled with (and modulated by)

other independent sequences of ongoing brain activity,

engendering an apparent synchrony of oscillatory

patterns.

The former is more likely to be true, as modulation by

different brain sources would most likely change somehow

the dynamics, which we did not observe. The interpretation

of reorganization is also consistent with the generally

observed effect of phase resetting associated with visual

evoked potentials (Ding et al. 2006). If we make the

common assumption that oscillations and long distance

synchrony both play key roles for cognition (Varela et al.

2001; Cosmelli et al. 2007), we can conjecture from these

results that SSVEP stimuli might induce cognitive side-

effects, depending on their frequency. For instance, sub-

jects often complain that SSVEP stimuli are disturbing, and

sometimes fall asleep during recording sessions—could

these effects be attributed to the perturbation of brain large-

scale synchrony?

The reorganization of oscillatory events propagates

preferentially through the visual pathway (Fig. 8); the

32 Hz stimulation activates preferentially the magnocel-

lular pathway, while the 16 Hz stimulation activates

preferentially the parvocellular pathway. This is consistent

with what we expected, as high frequency flickering stimuli

Table 1 Correlation test between q and coherence

Condition Pearson R P values (df = 49)

16 Hz, before 0.07 [0.10

16 Hz, during 0.21 [0.10

16 Hz, after 0.09 [0.10

32 Hz, before 0.16 [0.10

32 Hz, during 0.14 [0.10

32 Hz, after 0.06 [0.10

No significant effect is observed (P values always [0.10, even

without Bonferroni correction)

With df = 49, R should be above 0.279 to observe a significant effect

(if using Bonferroni correction, R [ 0.361 at least)

Fig. 5 Scatterplot of SES co-

occurrence measure against

magnitude squared coherence

during flickering light

stimulation. There are obviously

no correlation between these

measures

Fig. 6 Preferential pathway of oscillatory burst co-occurrences. We

can observe the difference between recording periods: before versus

during stimulation at 32 Hz (a) and 16 Hz (a0) and during versus after
stimulation at 32 Hz (b) and at 16 Hz (b0). On the left, lines represent

an increase in synchrony between the oscillatory events during

stimulation compared to the baseline EEG. On the right, lines
represent a decrease in oscillatory event synchrony in the period after

stimulation. For both frequencies under consideration, stimulation

induces a significant increase in event synchrony (a, a0) between the

occipital areas (lowermost zone) on the one hand and the frontal (top-
right zone) and orbitofrontal areas (uppermost zone) on the other

hand. The details of this path depend on the frequency: for SSVEP at

32 Hz, the privileged path goes through parietal areas (bottom-left
and bottom-right zones) whereas for SSVEP at 16 Hz it goes through

temporal areas (leftmost and rightmost zones). After stimulation (b,

b0), the extinction of the activity follows preferentially a trans-

hemispheric decrease
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tend to elicit responses biased towards the magnocellular

pathway (see e.g., Kim et al. 2007). However, this does not

match well with the classical picture about the propagation

of SSVEP in the brain. The complex spatial distributions of

SSVEP observed in brain imaging were until now attrib-

uted to standing and traveling waves (Burkitt et al. 2000) or

by sequences of source activation (e.g., Di Russo et al.

2007); it is noteworthy that these two classical theories do

not necessarily exclude each other, they are rather com-

plementary (Thorpe et al. 2007). The theory of source

sequences explains the complex patterns by alternative

activations in different brain areas; on the other hand, the

theory of traveling and standing waves theory explains the

complex patterns by the complex superposition of electri-

cal waves. Our results suggest a third complementary

theory. Contrary to usual studies, we investigate the

dynamics of oscillatory bursts in the EEG and neglect the

background EEG. We can assume that oscillatory bursts in

EEG arise from brain mechanisms organized in frames

(Freeman 2004), which are characterized by non-stationary

state transitions. As we have shown, background EEG did

not follow a consistent reorganization following the visual

pathway (Fig. 7 compared to Fig. 6). We would therefore

expect either:

– Weakly significant and trial-dependent effects of bump

co-occurrence between different brain areas if we

assume that oscillatory peak patterns are a side-effect

of the background activity.

Fig. 7 Preferential pathway of EEG background synchrony (using

coherence measures). We can observe the difference between

recording periods: before versus during stimulation at 32 Hz (a)

and 16 Hz (a0) and during versus after stimulation at 32 Hz (b) and at

16 Hz (b0). On the left, lines represent an increase in synchrony

between the oscillatory events during stimulation compared to the

baseline EEG. On the right, lines represent a decrease in oscillatory

event synchrony in the period after stimulation. For both frequencies

under consideration, stimulation induces a significant increase in

coherence (a, a0), very similar in location for both conditions (a vs.

a0). After stimulation (b, b0), the extinction of the activity follows

preferentially a trans-hemispheric decrease

Fig. 8 Simplified illustration of

the visual parvocellular and

magnocellular pathways.

Magnocellular pathway follows

a dorsal propagation, whereas

parvocellular pathway follows a

ventral propagation. The

regions approximately

correspond to those of Figs. 6

and 7
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– A consistent reproducible flow if we assume that

oscillatory peaks and background activity are only

weakly coupled

Our observations seem to support the second hypothesis;

we observed a consistent reorganization of the EEG

oscillatory events along specific visual pathways. This

hypothesis does not contradict classical theories. Indeed,

we wish to point out that bump modeling removes most of

the EEG background signal. Sequences of source activa-

tions and/or traveling and standing waves may occur in the

background activity. On the other hand, oscillatory events

are to some extent decoupled from the background activity

and are preferentially reorganized along the visual

pathway.

As a final remark, the reader should bear in mind that the

above effects were reported using one subject. Because we

checked using surrogate data that our results are not spu-

rious, and because we constrained the number of bump as

compared to what we reported in (Vialatte et al. 2008b),

this is a sufficient (as we investigate here a typical, and not

a quantitative aspect of EEG, see e.g., Friston et al. 1999)

proof that EEG oscillatory bursts and EEG background5

activity are functionally discorrelated. On the contrary, the

reported effect of visual pathway propagation could vary

depending on subjects. Furthermore, the propagation effect

is observed only at the scalp level, because bump modeling

does not allow yet the possibility to compute more reliable

source reconstructions. This final point has to be under-

stood as explanatory (it shows that our results are

biologically plausible) and illustrative: this effect has to be

confirmed with more subjects, and more technical inves-

tigations, which will be the object of our future reports.
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Appendix

We regrouped all pairwise coherence measures Cxy

between all electrodes x and y, into nine pre-defined set B

of brain areas (B1 = occipital, B2 = frontal left,

B3 = frontal right, B4 = temporal left, B5 = central,

B6 = temporal right, B7 = parietal left, B8 = parietal

right, B9 = occipital) corresponding to the nine zones used

for bump modeling aggregation. Each Bi encompasses a set

of Ni electrodes; the same electrodes that were used for

bump modeling aggregation (In other words, Bi * Ai). For

each pair of brain areas (Bi, Bj), we define the group

coherence Gij(f) as follows:

Gijðf Þ ¼

PNi

x¼1

PNj

y¼1

Cxyðf Þ

Ni � Nj
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