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Abstract—Traffic incidents such as accidents or vehicle break-
downs are one of the major causes of traffic congestion in urban
areas. Consequently, accurate prediction of duration of these
incidents is considered as one of the most important challenges
by traffic management authorities. Although data-driven regres-
sion methods can predict the duration of these incidents with
reasonable precision. However, the prediction performance may
vary considerably from one to another. Hence, it is important to
provide some measure of confidence associated with the forecast
duration of the incidents. Such measures can prove to be highly
useful in planning real-time response. To address this issue,
we propose Bayesian Support Vector Regression (BSVR), which
gives error bars as the measurement of uncertainty along with
the predicted duration of incidents. We also evaluate sensitivity
and specificity for different error tolerance limit to assess the
performance of BSVR.

I. INTRODUCTION

Disruptive events such as accidents and vehicle breakdowns
often lead to reduction in road capacity and hence, disruption
in normal traffic flow. Accurate prediction of duration of
these incidents is critical for advanced traffic management
systems. Therefore, this topic has accumulated considerable
attention in the field of transportation [1]. Data-driven re-
gression models such as Artificial Neural Networks [2] and
Decision Trees [3] have been used of late to obtain the
relationship between the external factors such as time of day,
affected lanes, weather condition and the incident duration.
However, the predicted values obtained by these methods
are subject to uncertainty because the prediction performance
varies with different test conditions. We propose to solve this
issue by applying a method, that can anticipate the uncertainty
associated with prediction error. The Bayesian Support Vector
Regression (BSVR) technique combines both Support Vector
Regression [4] and Bayesian inference [5] and therefore, it
can estimate variance of the prediction errors (denoted as error
bars) with the predicted values [6].

The time duration associated with a traffic incident can be
divided into four components: (1) reporting time (rt): the time
when the incident has been reported, (2) response time (st):
the time between reporting of the incident and arrival of the
response team, (3) clearance time (ct): the time required by
the response team to clear the road, and (4) recovery time
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(vt): the time taken by the traffic condition to restore back to
normal [1][7]. The incident duration T that we consider here
is the sum of all of these stages:

T = rt + st + ct + vt. (1)

Next we will briefly discuss related research works in this area.
Van et al. applied neural network in Bayesian framework to
predict travel times with confidence intervals [8]. However,
neural network algorithms tend to converge on local minima
rather than global minima, whereas Support Vector Regression
method does not suffer from this drawback. Therefore, we
choose BSVR over Bayesian Neural Network for estimation
of error bar associated with prediction. Wu et al. considered
1853 incidents for a five-month interval (May–Sept, 2015)
from Utrecht, a central city in the Netherlands and applied
support vector regression technique to predict the incidents
duration [4]. However, their approach does not provide any in-
formation about the uncertainty corresponding to the predicted
duration. On the other hand, Ahn et al. predicted traffic flow
in highways of Korea using BSVR approach [9]. However,
they did not predict duration of non-recurrent incidents in their
work, which is our area of concern.

The remainder of this paper is organized as follows. In
the next section, we describe our dataset. In Section III, we
briefly discuss the basic principle of Bayesian SVR, whereas
we analyze the prediction performance of BSVR in Section
IV. We determine the error bars associated with the predicted
values of duration and perform sensitivity-specificity analysis
in Section V. Finally, Section VI provides concluding remarks.

II. DESCRIPTION OF THE DATA

The dataset used in this study is comprised of (1) historical
records of incidents provided by the Land Transport Authority
(LTA) of Singapore, and (2) weather information from the
National Environmental Agency (NEA) of Singapore.

The historical records of traffic incidents contain the fol-
lowing information: Type of incident (vehicle breakdown or
accident), time (start-time and end-time in terms of month,
date, hour and minute), types of affected lanes, name and
direction of the expressway along which the incident hap-
pened, and the location of incident (road segment id, latitude &
longitude). The type of affected lane is represented by a serial
number according to its position from right to left as lane 1,



2, 3 etc. Singapore’s entire road network has 11 expressways,
which are divided into 2156 road segments for analysis. We
consider 8399 breakdowns and 2052 accidents recorded on
those expressways in the period of four months (Aug–Nov
2014). Furthermore, the weather data contain the rain intensity
information across the island of Singapore. These images have
a time resolution of 5 minutes [10] and each pixel corresponds
to an area of about 100 × 100 meters.

In this study, we consider the following nine features for
each traffic incident i: day of week (wi ∈ {0, 1}, where
0 represents weekend and 1 represents week-day), time of
day (ti ∈ {0, 1}, where 0 represents off-peak and 1 repre-
sents peak-hour), total number of lanes (ni ∈ {1, 2, 3, 4, 5}),
shoulder affected or not (si ∈ {0, 1}, where 0 represents
not affected and 1 represents affected), number of lanes
affected (li ∈ {0, 1, 2}), the type of affected lane (ai ∈
{0, 1, 2, 3, 4, 5, 6}, where 0 represents no lane affected and
1, 2, 3, ... represent the serial number of the affected lane
according to its position from right to left), expressway (ei ∈
{0, 1, 2, ..., 11}), direction (di ∈ {0, 1}, where 0 represents
upstream and 1 represents downstream), and rainfall effect
(ri ∈ {0, 1}, where 0 represents no rainfall and 1 represents
strong rainfall).

III. BAYESIAN SUPPORT VECTOR REGRESSION AS
PREDICTION METHOD

As Bayesian SVR can provide the confidence intervals along
with the predicted values, we apply this method to model the
relationship between traffic factors and incident duration.

Let us define a vector xi containing input features as xi =
[wi, ti, ni, si, li, ai, ei, di, ri]

T . The basic idea of SVR is to
find the optimal hyperplane w so that the input vector xi ∈ Rn

is mapped from low-dimensional space to high dimensional
space by a nonlinear mapping φ(xi) to get a linear decision
function [4]:

f(xi) = wT .φ(xi) + b b ∈ R. (2)

Let us further extend the SVR formulation to a probabilistic
framework called BSVR [6][11][12]. For BSVR, we consider
following regression model:

yi = f(xi) + δi xi ∈ Rn, yi ∈ R. (3)

where f is the relationship function with i.i.d noise samples
δi [13]. Now, let us consider f = [f(x1)...f(xN )]T , where N is
total number of incidents. In Bayesian framework, we consider
f as a random vector with prior probability P (f). Therefore,
the probability of f for a given training data set D is obtained
by applying Bayes’ theorem:

P (f|D) =
P (D|f)P (f)
P (D)

. (4)

which is defined as a posteriori distribution. The uncertainty
in prediction can either arise due to the noise in the data δi or
the limitations in model generalization P (f|D). We compute
error bars by incorporating both of these uncertainties [11]. Let
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Fig. 1: Absolute error distribution of vehicle breakdowns in
Singapore.

us assume the variance due to noise is σ2
n and the variance

coming from model fitting issue will be σ2
D. Therefore, the

error bar will be estimated by
√
σ2
n + σ2

D at the time of
prediction [13].

We follow the similar steps mentioned in [6] to implement
BSVR. To evaluate the prediction performance, we calculate
the Root Mean Square Error (RMSE) and the Mean Absolute
Error (MAE):

RMSE =

√∑N
i=1 e

2
i

N
, (5)

MAE =

∑N
i=1 |ei|
N

, (6)

where N is total number of incidents and ei is the error be-
tween the actual and predicted duration di and d̂i respectively:

ei = di − d̂i. (7)

Later, we perform sensitivity and specificity analysis to eval-
uate the detection performance of BSVR.

IV. PREDICTION PERFORMANCE OF BSVR

In this section, we analyze the performance of Bayesian
SVR method in predicting the duration of non-recurring road-
incidents in the network of Singapore. Fig. 2 shows the
distributions of the absolute error for vehicle breakdowns
and traffic accidents. The prediction performance in case of
accidents seems to have higher uncertainty, in comparison with
vehicle breakdowns. For some accidents, the prediction error
is even larger than 90 min. The RMSE and MAE values
obtained for vehicle breakdowns and accidents in Singapore
are mentioned in Table I. From the tables we can conclude
that it is generally more difficult to predict the duration of
accidents than breakdowns.

TABLE I: Prediction error for incidents in Singapore.

Vehicle breakdowns Accidents
RMSE 14.97 min 24.77 min
MAE 10.69 min 20.28 min
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Fig. 2: Absolute error distribution of accidents in Singapore.

V. ANTICIPATING UNCERTAINTY ASSOCIATED WITH
PREDICTION ERRORS

In this section, we determine the error bars associated
with the predicted duration of incidents. The predicted values
obtained in the previous section tend to have uncertainty
because the errors are subject to variations in test data-set.
Therefore, we apply BSVR to anticipate the variations in
prediction accuracy. Moreover, we analyze sensitivity and
specificity to evaluate the detection performance of BSVR.

A. Correspondence of the Error-bars with Prediction Errors

In this subsection, we show the correspondence of the
error bars with predicted incident duration for both vehicle
breakdowns and accidents in Singapore. To this end, we group
them separately according to the absolute value of prediction
errors in three different categories: 0−10 min, 10−20 min and
20−30 min. Further, we compute the average of the error-bars
associated with the incidents of each range and plot it against
the ranges in Fig. 3 separately for vehicle breakdowns and
accidents. From Fig. 3, we can conclude that on an average the
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Fig. 3: Average of the error-bars (in min) associated with
different ranges of prediction errors (in min) for vehicle
breakdowns and accidents in Singapore.

values of error bars are higher for accidents, which indicates
the accident data is more volatile.

B. Sensitivity and Specificity Analysis
In this subsection, we perform sensitivity and specificity

analysis to estimate the detection performance of BSVR. For
this purpose, we consider different tolerance values τd of
absolute prediction errors, for example τd = {4σ, 5σ}; where
σ is the standard deviation of the prediction errors. The errors
which are higher than the tolerance limit τd are considered
to be positive events and vice versa. Our goal is to antici-
pate these large errors in prediction by utilizing information
provided by the error bars. To this end, we consider this
problem as a detection problem. If the magnitude of error
bar is higher than a pre-specified threshold, then we anticipate
that the prediction performed will be highly uncertain. This
detector threshold is represented by γd, where γd is the mean
of error-bars.

There are four possible outcomes in this case: True Positive
(TP), False Positive (FP), True Negative (TN), and False
Negative (FN). We define the two parameters sensitivity and
specificity as:

Sensitivity = number of true positives (TP)
number of positive events (TP+FN) . (8)

Specificity = number of true negatives (TN)
number of negative events (TN+FP) . (9)

Our only constraint is to keep False Positive rate (F.P.R.) low
(≤ 30%), where

F.P.R. = 1− Specificity. (10)

We demonstrate the specificity-sensitivity profiles in Fig. 4
and Fig. 5 for vehicle breakdowns and accidents respectively
and analyze whether we can obtain high sensitivity with our
constraint. The blue line is termed as the no-discrimination
line, which represents the performance of a detector that
randomly selects an event to be either positive or negative.
Other curves should remain above this line for a detector to
be useful. In Fig. 4 and Fig. 5, BSVR can detect around
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Fig. 4: Specificity-sensitivity profile for the vehicle break-
downs in Singapore.

50% instances of large error for the tolerance level 5σ. For
this level of sensitivity, it only reports false alarms in around
25%−30% of incidents (i.e. specificity 70%−75%). However,
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Fig. 5: Specificity-sensitivity profile for the accidents in Sin-
gapore.

for tighter error tolerance (prediction error 2σ), we observe
degraded sensitivity.

Let us now show the positions of the vehicle breakdowns
and accidents in Fig. 6 and Fig. 7 to locate the training data-
points and the positive events (i.e. the incidents which have
large prediction error) in the map of Singapore. We observe in
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Fig. 6: Location of test data-points of vehicle breakdowns
corresponding to the positive events.
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Fig. 7: Location of test data-points of accidents corresponding
to the positive events.

Fig. 6 and Fig. 7 that the false negative incidents are located in
the region having high density of training data-points, because
the detector did not expect large prediction error for these
incidents. On the contrary, true positive events are located
away from training data-points, where the input features of

these incidents are different from the training data-set. Hence,
the detector was able to detect these incidents.

VI. CONCLUSION

In this paper, we proposed BSVR to provide information
about uncertainty in predicting duration of incidents in real-
time. To this end, we considered traffic incidents data from
Singapore. We performed sensitivity and specificity analysis to
evaluate the detection efficiency of BSVR and found that it can
detect variations in prediction error with reasonable accuracy.
In future work, we plan to analyze larger datasets and apply
Gaussian Process to compare the results with Bayesian SVR
for anticipating the uncertainty associated with the prediction
error values.
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