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Abstract—This paper is concerned with a system for detecting
and tracking multiple 3D bounding boxes based on informa-
tion from multiple sensors. Our framework is built around an
inference engine similar to the probability hypothesis density
(PHD) filter, where the state space consists of stochastic bounding
boxes with constant velocity dynamics. We outline measurement
equations for two modalities (vision and radar). The result is a
flexible inference system suitable for use on autonomous vehicles.

I. INTRODUCTION

Recently, there has been significant interest in perception
systems for autonomous vehicles (several reviews are available,
see e.g. [1]-[3]). This paper is concerned with fusing detections
from various sensor modalities into a list of 3D bounding boxes
corresponding to objects surrounding the vehicle. Specifically,
we consider radar and vision in this paper, though we are
interested in general frameworks which can be adapted to
different configurations.

In the following list we categorise some of the approaches
available in the literature that address the object detection and
tracking problem:

o Specific processing pipelines: There are several ap-
proaches based on pipelines for combining different sen-
sors; these achieve good performance (see e.g. [4]-[6]).
However we are interested in integrated probabilistic
models that, for example, allow sensor configurations to
be altered arbitrarily.

o Optimisation based 3D bounding boxes: Several papers
compute bounding boxes as part of a probabilistic opti-
misation (see e.g. [7], [8]). While possibly not quite as
temporally integrated as Bayesian filter based approaches,
these papers contain many ideas that can be used in other
contexts.

o Bayesian filter based approaches: This category ranges
from approaches which track object centres (see e.g.
[9], [10]), to approaches which add terms to maintain
estimates of bounding boxes (see e.g. [11]-[13]), all
the way to approaches which consider spatial extent as
part of the core probabilistic update (see e.g. [14]-[17]).
The latter seems to be a favourable way to address the
problem.
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In this paper we consider a Bayesian filter approach with
similarities to [7]-[9], [12], [14], [16].

In the multitarget tracking literature, there are two main
approaches to computationally efficient multi-target tracking
with Bayesian filters:

o Data association methods: this includes the joint probab-
listic data association filter (JPDAF), the multi hypothesis
tracker (MHT), or more generally fixed measurement
association schemes.

e Random finite set methods: the most common instan-
tiation of this idea is some variant of the probability
hypothesis density (PHD) filter, though other methods are
available.

Reviews of these methods are available (see e.g. [3]). We
implement an inference engine similar to the marginalized
particle PHD filter. Marginalized particle filters have been
used previously for object tracking problems (see e.g. [14]).
This approach splits the state vector into linear and nonlinear
components - in our case the linear components are the speed,
bounding box dimensions and 2D position offset. While [14]
employs a data association based design, marginalized particle
PHD filters are available in the literature (see e.g. [18]).
Approximate approaches are common for the multi-sensor
PHD filter problem (see e.g. [19]); we will adopt the iterated-
corrector.

For the visual detection measurement function, we will
project the 3D bounding box onto the image frame (see
e.g. [7], [8], [20]). In these approaches, a detector module
analyses the camera feed and returns a list of detected 2D
bounding boxes. The projected bounding box can then be
linked to the detected bounding boxes using a Kalman update.
We outline the necessary linearised update equations. For
radar measurement function we compute an expected radar
detection position conditioned on the object state (this idea is
inspired by e.g. [21]). In this paper we use a particle labelling
scheme, which has similarities to k-means clustering and track
continuity [22].

To the best of our knowledge, we are are the first to use
visual and radar information in a 3D bounding box PHD filter.



II. DETAILS OF PROPOSED APPROACH

A. General Formulation

We use an approach based on the multi-sensor probablity
hypothesis density (PHD) filter, which is implemented with the
marginalized particle filter approximation. We will adopt the
choice of state vector from [14], except we make object speed
a linear variable.

The state vector is split into discrete, linear and non-linear
components, i.e. © = [, T, ;| Where ©,, = [Tg, Tz, Ty], Ty
is the object class, and x; = [Ty, T, Toy, T, Tew, Tels Le):

e g is the heading in the global frame.

e 2, and z, are the position in the local frame (distance
in front of the ego vehicle and distance to the left of the
ego-vehicle respectively).

e x, is the speed in the global frame.

e xp, T, and x; are the height, width and length of the
object respectively.

e Ty and z are 2D offsets for the bounding box in the
object frame, relative to [z, x,].

e . is the ground elevation near the object (relative to the
ego vehicle).

In the marginalised particle filter representation, each par-
ticle with index i is represented by the following tuple:

B = (@ @y wi, i, my, Py). M

Here k represents the time index, z}"" is the category, &}
is the non-linear part; wy, is the particle weight, [% is the object
track label; m, is the mean of the linear part and P} is the
covariance of the linear part.

We will also refer to object tracks with index ¢, where the
state is averaged over the particles with the associated label:
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where ar:Z’Z represents a categorical distribution over classes.

We assume the following: The ego-vehicle always has
knowledge of the heading in the global frame' cy; we have
acess to the change in the ego-vehicle position between up-
dates [Ax,, Ax,]; and we have knowledge of the ego-vehicle
velocity .

Each measurement is expressed as a measurement matrix
H, an offset h and a covariance R. Note that H specifies
the linearised relationship between the linear states and the
measurements. This represents the linear state conditioned
on the non-linear state, such that Hx; ~ N(:;h,R). We
also introduce the following intermediate variables: g, :=
x9 — cp is the object heading in ego-vehicle frame, and
zy = atan2(z,,x,) + ™ — g, is the heading to the ego-
vehicle from the object in the object frame.

'For simplicity we express all headings in the global frame. Note that in
practice the heading does not need to accurately represent the actual compass
heading (it is sufficient that it is self-consistent over time).

front

—ve

foe -
c—

sensor

detected
point

Fig. 1. The relationship between the angle to the sensor from the object in
the object frame x4, and the displacement c of the detected point from the
object centreline.

B. Radar Detections

An automotive radar sensor generally returns one 2D point
corresponding to the position of each detected object®. There
is some work which relates radar to bounding boxes (see e.g.
[21]) and we make an assumption in a similar vein’:

Assumption 2.1: Within the range —* < x4 < 7, the
expected position of the radar detection is on the front face of
the object. The displacement along the front face of the object
is given as ¢ := 2”“’7“ (relative to the forward centreline of
the object; see Fig. 1).

Note the H matrix is dependent on the angle x4; the
subscript indicates the relevant range. For example, the left
side is given as:
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The offset h is given as:
T — Xy
h—B—me.u : |: Y — Ty :|7 (4)

where [Z,,, Ym] is detected point; mod (x,a,b) applies
the modulo operator to ensure a < = < b; By is the 2D rotation
matrix and the measurement covariance I is constant.

Note for the results presented here, radar velocity was not
used as it occasionally gives incorrect measurements; further
investigation is needed to characterise this.

C. Visual Detections

We will make the following assumptions:

o We have the position of detected bounding boxes in the
image frame, together with uncertainties on each face and
the vertical centerline?, so that the mean and variance is
expressed as [1q, pa], where d € {up, down, left, right}.
For simplicity, we assume the uncertainties are indepen-
dent’.

2This seems to hold for small objects like pedestrians, larger objects with
surfaces oriented perpenduclarity to the sensor may lead to multiple points.

3In future work we plan to investigate the implications of this assumption
in more detail.

4In our experience the position of the sides of visually detected bounding
boxes do not always accuarately correspond to the 3D bounding box, so we
assign more weight to the verticle centerline than the sides.

SIn future work, the uncertainty could be estimated adaptively for each
detection. This would be helpful if for instance only part of a large object is
detected occasionally.



« We have access to a transformation from the local frame
to a cordinate frame centered on the camera 7T,,. For
simplicity we assume it is fixed.

e We have access to the camera matrix C (i.e. a matrix
that maps from the homogeneous coordinates onto pixel
coordinates).

If we consider an arbitrary point p,.s, we can find the

projected position fpm_f [fus for fa]- The actual pixel

[fuva] are given by fu = % and

We also find the Jacobian J.

coordinates fr.r :=
fuom b

pref
fpre‘f = CTcwprefa (5a)
111 0 —fy
Jp'r'ef T ﬁ |: 0 1 _fv :l CTew. (5b)

The general steps are as follows:

o Consider the eight corners of the mean bounding box
(with position vector p;), and project each onto the
camera frame (with pixel coordinate vector f;):

Di = [‘Trca Ly, 'I(’] + Lz, (6a)
i € {left,right} x {front,back} x {up,down}, (6b)
where L; relates x; to the local frame around the vehicle
(definition in (9)).
o Find the most extreme side in each direction in the camera
frame, i.e. for each d € {up, down, left,right}:

.| argmax; Agf; d € {down,right} (7a)
td = argmin; Agf; d € {up,left}

B 1 0| de{left,right}
where A = { 0 1 J d € {up, down} (7b)

Let pg := Di,» Ly := Lid, etc
e For each side in the camera frame, find the linearised
matrices:

Hy = AgJy,La, (8a)
hag =nq — Aa(fa — Jp,Laxi), (8b)
R4 = pa. (8c)

« Repeat the previous step to find the update equation for
the vertical centerline.

D. Transition Equations

We assume all vehicles follow constant velocity modified
unicycle dynamics, which is a reasonable expectation for
vehicles manoeuvring at low speed.

wz‘k—l = fmn + €n, €n ~ N(707Qn)7 (103)
xifl
fo, = | 251+ Az, |, (10b)
xiq + Az,
Ty =Fo i +e, e ~N(:0,Q),  (10c)

where [Ax,,Ax,| is the change in the position of the
tracked object due to the change in the ego-vehicles position,
and At is the time step. Fy, is the identity matrix except for
one At term linking z,, and z;.

E. Probabilistic Update

For RFS filters it is typically assumed that the measurement
function normalisation constant (NC) is known. Unlike the
single target Bayesian filter, where the NC cancels out, in RFS
filters it is needed for a clutter correction. One issue is that due
to model mismatch, we may only want to perform inference
with g(+) up to an unknown scale factor. There is some research
into PHD filters with unknown clutter rates (see e.g. [19], [23]).
Here objects known as “clutter generators” are modelled as
a special type of detected object. We take inspiration from
from this idea, and assume the clutter has the same dynamic
properties as the detected objects. This allows us to consider
an alternative equation of the following form (using notation
from [18]):

vr(z) = (1 = pa(z ))vk|k 1(7)

(z)g (Z|1’)Uk:\k 1(z)
* Z ) - [ pa(€)g(2|€)vik—1(£)dE’ (an
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where f@p(z) is a “proportional clutter” rate. Note that
we also employ separate object classes for clutter; these
may help to model situations where clutter is not temporally
independent.

We assume each sensor has a constant proportional clutter
rate x, (as described in Sec. II-E), and that the detection
probability pg4(x,) is constant for each sensor, given the
nominal position [z, z,] is inside the sensor’s field of view
(otherwise p4(x,,) is zero).

F. Measurement Association

Measurement association is performed for the purpose of
initiating new track labels (and thus providing initial track
estimates for k-means based state segmentation; see Sec. 1I-G).

The following steps will be used to perform measurement
association on each sensor modality individually:

o Compute a dissimilarity function S (@f€7 T¢) that re-

lates each detection CDJ to each object track Eé If
S (’Di,‘ﬂ) < €1, the object track T¢ and detection @J
can be associated.

o For each unassociated detection, we create a new object
track label /,., with an initial state estimate ‘If;"““
estimated from the detection information ©7..

For the function S(-, -), we use horizontal distance for radar

detections and pixel displacement for camera detections.

G. State Segmentation and Particle Labelling
We employ the following steps partly based on k-means
clustering (inspired by [22]):
o For each particle, if the distance to the current label is
below a threshold €3, retain the current label. Else find
the most likely object track label:



w — +1 leftes b — +1 frontei o — +1 uper (9a)
¢ -1 righteds * -1 backei > 0 downet’
0 0 b;sin(zg) a;cos(xg) sin(xy) cos(zg) O
0 0 bjcos(xy) —a;sin(xy) cos(xy) —sin(xy) O
L; = (9b)
’ 0 ¢ 0 0 0 0 1
0 0 0 0 0 0 0
i . i ¢ Kp (camera) 1.5
. =argmin D(x;, x},). 12 (camera) 0.25
gk’ g@ ( k> k) ( ) Ze]f (c:m:ra‘) 10 pixels
p g (camera; centre, bottom) 10
. . p g (camera; sides, top) 1000
Here D(-,-) represents a distance metric between two e G 1000
. . (radar) 0.15
state space samples. If the distance is below a threshold GRET) T
€4, we can adopt the best object track. Otherwise the T dag(] 0505 1)
particle is unlabelled. R ==
« Recompute object track state estimate from updated la- wy, (cluten 10-°6
€ 1
bels. - 5
. _ = :
o Perform track maintenance: Q1 (pedestrian) diag([0.5,0,0,0,10~3, 103, 0])
— Remove track labels whenever wf, = 0. Q (pedesian cluter s 0,000,101, 10_]14 oD
. Vi Vi mp (pedestrian) 0,1.5,0.5,0.5,0,0,0
— Merge object tracks whenever D(x;',x;’) < Py (podestran) ng([0.5,10-5, 105, 105, 1,1])
€2, Vﬂh ly € 4. Qy (eyclis) diag([so, 0,0,0,10~3, 10*3,0})
. . . Q (cyclist, clutter) diag([0,0,0,0,10=1, 1071, 0|)
« Optionally repeat until convergence (this was not needed Ly,fic(zyc,i:)er - [([J, TE 00 160 00T }
1 Py, (cyclist) diag([400,1076%,1076,1076,1,1,0|)
or the experiments presented here). » ®,107%,10°°
Ps 0.99

H. Processing Steps

The algorithm consists of the steps shown in Fig. 2 (note
the marginalised particle filter updates are generally based on
[18], though the equations are simplified by both the absence
of linear dynamics and the use of the proportional clutter as
mentioned in Sec. II-E):

III. PRACTICAL ASPECTS

For the results presented in this paper we restrict ourselves
to pedestrian and cyclist detection. We employ the faster
RCNN object detector [24] ©.

For both classes (pedestrian and vehicle) we add “clutter
versions” of the classes. These are the same as the non
clutter versions, except they have a different birth weight, are
assumed to be only detectable by radar, and are assumed to be
stationary (thus have a different ();). They are included in the
object tracks, which allows each object to be assigned a given
probability of being clutter.

We only store one off-diagonal element (between x, and
x¢) of the covariance matrix to increase processing speed.
This did not seem to significantly affect the results, through
further work could better quantify this.

We only add new birth particles in the vicinity of detections,
since particles far away from detections are quickly discarded.
As an approximation, we add n; particles each with a weight
of wy, around each detection. So long as wy, is small, this should

0This was pretrained on VOC 2007 dataset [25] and fine-tune the model
using Caltech pedestrian detection dataset [26]. In the experiments, the object
detector threshold is set to 0.5 and the intersection-over-union threshold in
the non-maxima-suppression step is set to 0.5. After the object detection, the
results are further smoothed by tracklet algorithm proposed in [27].

TABLE I
PARAMETERS USED FOR EXPERIMENTS.

have minimal bias on the results. Note that w, is different for
clutter and object classes.

The inference was implemented in C++ using OpenCV.
Without optimisation, computation takes ~ 400 ms per update.

We employed a hysteresis threshold to select objects based
on weight and clutter probabilities. Finding stable estimates of
the heading of objects presented some difficulties, and we use
additional smoothing to find the final estimated heading.

IV. EXPERIMENTS

A. Overview

Since we could not locate suitable public datasets that
include radar data, we performed experiments on a propri-
etry dataset. The camera used was the JAI AD-080 with a
resolution of 1024 x 768. Calibration was performed using a
checkerboard pattern and the OpenCV calibration suite. The
radar was the Delphi ESR system.

B. Qualitative Results

Sample results are shown in Fig. 3. In each figure, the red
box shows the result of the image object detector, and the
green box shows the detected objects in the bounding box
filter. It can be seen that most objects are correctly detected, at
least in cases where the visual bounding boxes where correctly
identified. The track management was able to assign static ID’s
to objects in most situations.



1) Associate the detections and create new object track
labels (as specified in Sec. II-F).
2) Apply the transition equations to each particle:
a) Update particle weights:
Whjg—1 = Psti1- (13)
b) Compute f;, and F,, based on wZil accord-
ing to Sec. II-D.
¢) Sample :cz",i_lz

zp  ~ N fan, Qut Fa, PL_ FF ). (14)
Here N (x; m, P) is the standard Gaussian den-
sity.

d) Predict m};lk_l and P,ilk_l:

My = Fami_y, (15a)
Pijgy = Fu Pi Ff.  (I5b)
3) Apply the following steps for each sensor modality

sequentially:
a) For each particle ¢ and each detection group j
(which comprises the set of update equations
$; > (H, h, R), compute the Kalman update:

Il Nt EM, . Sur),
(H,h,R)EN;

no__ .1
Wij = Wo|k—1

(16a)

!’ i
My = My

+ Y. Kpgr-(h—Hml, ), (16b)
(H,h,R)ED;

power function of the weight.

“We use an adaptive resampling scheme, where quotas are given to different objects and classes, and the probability of selection is proportional to a

Py=P 1~ >  KgrSurKjg
(H,h,R)EH,

(16¢)

SH,R :Hpé\k—lHT+R’ (16d)

Ky r= Poi\;cleTSE,lR' (16e)

b) Normalise the weight contribution for each par-
ticle:

"
/ Wi

(VA (Hp +1)- Zi/ wéfj'

A7)

¢) Sample the linear update for each particle:

(mz)|kf_17pg|k71)
o prob o< w4 (1—pq)
(m;ypqu)
prob oc wj; VY

(18)
d) Compute the final particle weight:

wh = wh - (1= pa(@lp_,)) + D wij.

(19)

e) Update object track labels for each particle and

compute EAP estimates for each object track
(see Sec. II-G).

4) Resample to a constant number of particles n,“.

Fig. 2. Algorithm overview.

C. Failure Cases

In this section we outline some examples of scenarios where
the system did not work as expected.

Fig. 4 shows the detection of two pedestrians with a
single bounding box, despite two image frame detections being
presented by the image object detection module. This was
caused by an incorrect decision by the track management
system. This could be resolved by improving the logic to
generate new object tracks. In particular, the track merging
should recognise when there are in fact two objects, perhaps
by considering the PHD weight. It also shows detection of a
non-pedestrian object. This was caused by a false detection
in the visual object detector. There are also cases where the
visual object detector misses a pedestrian. These cannot be
resolved through improvements to the tracking algorithm, and
could only be resolved via improvements to the bottom up
visual object detector.

V. FUTURE WORK

The following areas are possible avenues for investigation

in the future:

e Other sensors: we plan to integrate both lidar detections
and optic flow information.

o Improvements to track management: many of the failure
cases seem to be caused by bad track management. We
will investigate more sophisticated, possibly model based
approaches, which may give better performance. Ideally
good track management could be achieved with few
heuristic rules.

e Radar system identification: it may be possible to per-
form experiments to characterise how automotive radar is
reflected off various types of objects.

o Elevation as a state variable: This could be useful in
cases where the ground plane is not approximately flat.
However it is not clear whether such a system is observ-
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Fig. 3. Detection of multiple pedestrians and cyclist.

(a) (b)

Fig. 4. (a) Detection of two pedestrians with a single bounding box. (b)
Detection of a non-pedestrian object.

able with just visual and radar information.

VI. CONCLUSION

We propose a PHD filter framework for tracking 3D bound-
ing boxes using multi-sensor information. Measurement equa-
tions for each modality (i.e. radar and visual object detections)
are provided. We also proposed a “proportional clutter” PHD
filter for measurement functions with unknown normalisation
constants. Experimental results show that the system is viable.
While there are several cases where the system did not operate
as expected, we plan to address these in future work.
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