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a b s t r a c t

3D human motion tracking has received increasing attention in recent years due to its
broad applications. Among various 3D human motion tracking methods, the particle filter
is regarded as one of the most effective algorithms. However, there are still several
limitations of current particle filter approaches such as low prediction accuracy and
sensitivity to discontinuous motion caused by low frame rate or sudden change of human
motion velocity. Targeting such problems, this paper presents a full-body human motion
tracking system by proposing exemplar-based conditional particle filter (EC-PF) for
monocular camera. By introducing a conditional term with respect to exemplars and
image data, dynamic model is approximated and used to predict current states of particles
in prediction phase. In update phase, weights of particles are refined by matching images
with projected human model using a set of features.

This method retains advantages of classic particle filters while increases prediction
accuracy by replacing the smooth motion model with exemplars-based dynamic model
which constrains evolved particles within an area closer to true state. Therefore, tracking
robustness to discontinuous motion is improved such as under conditions of sudden
change in motion velocity or using low-frame rate cameras. To verify the effectiveness and
efficiency of the proposed algorithm, a variety of datasets are selected for testing and the
results are also compared with the state-of-the-art methods in this domain.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

3D human motion tracking is a process in which the
configuration of body parts are estimated from one or
several sensor inputs [1]. It has received great attention in
the last two decades due to its wide applicability in many
areas, such as surveillance, virtual reality, medical analysis,
computer animation and human–computer interaction
.sg (J. Dauwels),
[2,3]. Although a large amount of research on human
tracking has been carried out, the task of 3D human motion
tracking from monocular image is still challenging due to
following reasons. First, human pose has high degree of
freedom leading to heavy computations of searching in
high-dimensional state space. Second, there are a number
of issues significantly affecting tracking results need to be
addressed, such as imaging conditions, features extracted
from images, occlusions, velocity changes, etc. Currently,
most of commonly-used particle filter-based approaches
concentrate on developing motion prior that allows effi-
cient prediction in high-dimensional pose state. However,
the effectiveness of such motion priors, which are derived
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from learning statistical models of captured human motion
data or from simple dynamics models, remains an open
problem. As a result, many current existing particle filter-
based methods suffer from inaccurate human pose predic-
tion and sensitivity to discontinuous motions, especially
under conditions of using low-frame rate cameras or
existing of sudden changes in human motion. This issue is
even more serious when a simple dynamic model which
assumes continuous and smooth human motion is applied
in prediction. When discontinuous or abrupt motion occurs,
the prediction accuracy of methods based on such models
will significantly drop which results in either low tracking
accuracy or large searching computation as a compensation.

In this paper, a new method named exemplar-based
conditional particle filter (EC-PF) is proposed for 3D human
motion tracking. For EC-PF, system state is constructed to be
conditional to image data and exemplars in order to improve
prediction accuracy. Current frame can be thought of as a
snapshot of the current human pose when human motion is
captured. It contains accurate current human pose informa-
tion comparing with temporal coherence [4] and learnt
dynamics model [5]. In this proposed approach, a small
amount of exemplars with prior knowledge, such as joint
locations and relative depth information between two joints,
are created and stored beforehand. In prediction step, 3D
human pose estimation [6,7] is conducted by using shape
context matching [8,9] with exemplars. A dynamic model
from previous frame to current frame is then built based on
the human pose information from current and previous
frame in order to predict particles' current states. In the
update step, a set of features extracted from current frame
Fig. 2. Challenges in classic particle filters. From time t to time tþ1, object A exp
solid lines at time t. (b). Object A and particles at time tþ1. Particles at time t are
circles with solid lines.

Fig. 1. The process of classic particle filters.
are used as observations to update particles' weights. Since
smooth or pre-learnt motion model [10,11] used by classic
particle filters is replaced by an exemplar-based dynamic
model here, particles can evolve within an area closer to true
state even in the case of using low-frame rate cameras or
existing of sudden velocity changes in human motion.
Experimental results in Section 5 demonstrate the robust-
ness of the proposed method to discontinuous motions.

To sum up, the contributions of this paper include
1.
erien
den
With theoretical deduction, EC-PF is proposed by con-
ditioning system state with images and exemplars in
order to improve prediction accuracy.
2.
 An exemplars-based dynamic model construction via
shape context matching is introduced to effectively
estimate three dimensional pose with a monocular
camera setup.
3.
 A full-body human motion tracking system for mono-
cular camera is realized based on proposed EC-PF. By
comparison, its advantage in robustness to abrupt
motion velocity change and low frame rates is verified.

This paper is organized as follows. In Section 2, we
briefly review related works. In Section 3, classic particle
filters and EC-PF are described, and the differences between
these two filters are discussed. Section 4 presents the whole
human motion tracking process by applying proposed
EC-PF. In detail, 3D human model is first introduced,
followed by description on pose estimation method and
likelihood measurement. Experimental results are provided
in Section 5. Section 6 concludes this paper.

2. Related works

There has been a large amount of work on human pose
tracking in the last two decades. There are mainly two
categories in human motion tracking: machine learning
methods and object tracking methods [12]. In the first
approach, researchers proposed the use of machine learn-
ing methods that exploit prior knowledge in gaining more
stable estimates of 3D human body pose [13–15]. However,
these algorithms require a large amount of samples which
limit their applications. Object tracking methods [16,17]
commonly follow two sequential steps: human pose fea-
tures are extracted and tracked in each frame, then human
ces abrupt motion: (a) Object A with particles denoted by circles with
oted by circles with dotted lines. Particles at time tþ1 are denoted by



Table 1
The pseudo-code of EC-PF.

For time steps t¼0,1,2,…

1. Initialization at time 0: for i¼ 1;…;Np , sample xðiÞ
0 � pðx0Þ; ωðiÞ

0 ¼ 1
Np

2. Estimation of prediction function f exemplars;I1:t .

Compare current frame It with exemplars to estimate current system state_xmatched;t , calculate transition function f exemplars;I1:k

according to_xmatched;t ¼ f exemplars;I1:t ð
_x t�1Þ

3. Importance sampling. For i¼ 1;…;Np , draw samples_x ðiÞ
t � pðxt jxðiÞ

t�1 ; exemplars; I1:t Þ:
4. Weight update. For i¼ 1;…;Np , update the importance weights ωðiÞ

t ¼ωðiÞ
t�1pðzt j_x

ðiÞ
t ; exemplars; I1:t Þ.

5. Normalize the importance weights: ~ω ðiÞ
t ¼ ωðiÞ

t

ð1=Np Þ∑Np
j ¼ 1ω

ðjÞ
t

.

6. Compute the optimal results:_x t ¼∑Np

i ¼ 1
_x ðiÞ

t ~ω ðiÞ
t

7. Resampling if necessary.
8. Repeat Steps 2–7.

Fig. 3. The process of EC-PF.
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Fig. 4. 3D human model (a) kinematic chain and (b) 3D human body
model.
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pose is reconstructed from the obtained features. Many
researchers have conducted studies on the first step where
people usually use the configuration in current frame and a
dynamic model to predict the next configuration [18].
However, 3D human motion tracking frommonocular video
sequences is still a challenging task due to self-occlusion
and depth ambiguities. Some restrictions or prior knowl-
edge may be required beforehand such as in [19,20]. Also, to
recover the parameters of a human pose correctly from
video sequences is a difficult task due to the high degree of
freedom in human body configurations.

Particle filter [21], which is able to track non-linear
motion, can solve problems related to complex human
motion. Generally, a number of particles are sampled using
a dynamic model, including a noise component. Each
particle is assigned with an associated weight which is
updated according to a likelihood measurement function.
The pose estimation is obtained by the weighted sum of all
particles. Aiming to overcome the high dimensionality of
system states and sample impoverishment [22], many
methods have been proposed to make the human pose
more tractable. The first group of methods is to use priors
on human movement. This kind of methods can be
recognized as learning motion models to guide particle
prediction effectively in prediction step. Raskin [23] pro-
posed the Gaussian Process Annealed Particle Filter
(GPAPF) to track 3D human motion. GPAPF combines
the annealed particle filter (APF) [24] with the Gaussian
process dynamic model (GPDM) [25] to reduce the
dimensionality of state vector. This method improves the
tracker's performance and increases its stability and ability
to recover from losing the target. In [26], walking
dynamics was learnt from a training set to predict the
human pose. These kinds of learning motion models need
a large number of training datasets and a complex training
process; otherwise the derived dynamics is impossible to
correctly describe human motion in the real world due to
the complexity of human motion.

Covariance scaled sampling (CSS) is introduced to guide
particles by inflating the posterior covariance of previous
frame in [27]. This method focuses on particles in regions
where there is uncertainty, such as depth ambiguities in
monocular tracking. Deutscher et al. [24,28,29] proposed APF
to track 3D human motion with three calibrated cameras.
They use simulated annealing to make particles locate on the
global maxima of the posterior at the expense of multiple
iterations per frame. Particles are initially sampled widely,
and then their range of movement is decreased gradually
over time. These methods spread particles in a large area at
initialization or enlarge posterior uncertainty to track the
human motion more accurately. Therefore, the computation
burden becomes heavy, which results in slow processing.

In [30], a dynamical simulation prior was proposed based
on the truth of physical ground–person interaction. This
prior is able to constraint human motion in the range of



Table 2
Lengths of the segments of human
model.

Segment Length (m)

Lower arm 0.25
Upper arm 0.25
Thigh 0.43
Calf 0.40
Torso 0.46
Head 0.30

Fig. 5. Examples of shape contexts: (a) input image and (b) sampled edge
point and example log-polar histogram bins.

Fig. 6. The projections from world coordinate system onto image plane.
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physical plausibility. Chang and Lin [31] proposed a pro-
gressive particle filter to decrease computational cost by
employing hierarchical searching. This hierarchical search-
ing approach decomposes high-dimensional space into
several lower-dimensional spaces. In this method, there
are some restrictions on initial human pose.

Smooth or pre-learnt dynamic models are used in the
above methods. Once abrupt motion of human object
occurs between previous frame and current frame, this
kind of dynamic models cannot describe human motion
correctly; these methods may fail to track human motion.

3. Classic particle filters and exemplar-based conditional
particle filter

In this section, the concept of classic particle filters is
first described, as well as its limitations. Targeting such
limitations, EC-PF is introduced. The theoretical deduction
and working process of EC-PF are followed.

3.1. Classic particle filters

A particle filter is a recursive process that estimates the
posterior probability from a set of weighted particles. Let
xt and zt denote the state vector and the observation at
time step t respectively. The history of observations from
time step 1 to t is expressed as Zt ¼ fz1; :::; ztg. x̂ is the state
estimation. Np weighted particles at time t are expressed
as fxðiÞ

t ;ωðiÞ
t ; i¼ 1; :::;Npg. xðiÞ

t represents the state of ith
particle at time step t, its corresponding weight ωðiÞ

t .
Classic particle filters contain two major steps, namely,
prediction and update. The details of each step are
described as follows.

3.1.1. State prediction
Firstly, sample a new set of particles by choosing the

particles with the highest posterior probabilities
pðxðiÞ

t�1jzt�1Þ among the previous particle set at time step
t�1. Then, assume that the pdf pðxt�1jZt�1Þ is available at
time step t�1, system state is predicted according to

pðxt jZt�1Þ ¼
Z

pðxt jxt�1Þpðxt�1jZt�1Þdxt�1

3.1.2. State update
Compute the posterior pðxt jZtÞ, weight current particles

by the predicted prior probability using the above equa-
tion, and apply observation zt to estimate the likelihood
probability pðzt jxtÞ. The posterior pðxt jZtÞ can be expressed
in Bayesian form as

pðxt jZtÞ ¼
pðzt jxtÞpðxt jZt�1Þ

pðzt jZt�1Þ
ð1Þ

where pðzt jZt�1Þ denotes normalizing constant in the
denominator as

pðzt jZt�1Þ ¼
Z

pðzt jxtÞpðxt jZt�1Þdxt ð2Þ

The normalized weight ωðiÞ
t is regarded as the posterior

probability

ωðiÞ
t ppðzt jx̂ðiÞ

t Þ; ∑
Np

i ¼ 1
ωðiÞ

t ¼ 1 ð3Þ

Finally, the mean state at time t can be estimated as

x̂t ¼ ∑
Np

i ¼ 1
ωðiÞ

t x̂ðiÞ
t

Classic particle filter is a popular non-linear filter. Its
process is shown in Fig. 1, there are two main phases,
prediction phase and update phase. In prediction phase,
each particle x̂ðiÞ

t is diffused based on predefined dynamics
model. In update phase, observation zt is extracted from
current frame It and used to refine particles' weights.



Fig. 7. Example features: (a) original image, (b) edge feature and (c) silhouette feature.

Table 3
The pseudo-code of proposed 3D human motion tracking method.

Initialization: t ¼ 0

Generate Np particles with corresponding weights fxðiÞ
0 ;ωðiÞ

0 ; i¼ 1; :::;Npg sample

xðiÞ
0 � pðx0Þ; ωðiÞ

0 ¼ 1
Np

for t¼1–k
Prediction

Shape contexts feature is first extracted from current frame and to be compared with exemplars. Calculate current 3D human pose x̂matched;t

according to the method in Section 4.2.
Compute transition function f exemplars;I1:t based on x̂matched;t and previous state x̂t�1

Predict each particle state according to f exemplars;I1:t

x̂ðiÞ
t ¼ f exemplars;I1:t ðx̂

ðiÞ
t�1Þ

Update
Edge and silhouette information of human body are extracted from current frame and denoted as Ze;t and Zs;t .
Calculate weights of each particle according to likelihood measurement function.

ωðiÞ
t ¼ωðiÞ

t�1pðzt j
_x ðiÞ

t ; exemplars; I1:t Þ
Normalize the weights ωðiÞ

t ¼ ~ω ðiÞ
t

ð1=Np Þ∑Np
j ¼ 1 ~ω ðjÞ

t

Output
Estimate the optimal states at time t as

x̂t ¼∑Np

i ¼ 1x̂
ðiÞ
t ωðiÞ

t

Resample Np particles if necessary.
end
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As an example, one challenging case for classic particle
filters is shown in Fig. 2. A classic particle filter is applied
to track object A by using 11 particles denoted by circles. If
object A experiences abrupt motion from time step t to
time step tþ1, particles' states predicted by smooth
dynamic model would not be around true state of object
A (see Fig. 2(b)). Finally, the classic particle filter fails to
track object A.

3.2. EC-PF

Classic stochastic filters such as Kalman filter, extended
Kalman filter and particle filters are constructed for dyna-
mical systems discretized in the time domain. A smooth
dynamic model is always chosen as a prior used for state
prediction in these filters. Estimated states by these filters
may diverge from true states if smooth dynamic model
does not describe object's motion correctly. However such
smooth dynamic model cannot describe complex motions
in the real world. In order to solve this problem, in this
paper EC-PF is proposed by conditioning system state with
image data and exemplars.
The working mechanism of EC-PF is based on the follow-
ing two equations:

State equation xt ¼ f exemplars;I1:t ðxt�1Þþwt

Measurement equation zt ¼ hðxtÞþvt

where f exemplars;I1:t is the function for predicting current state
from previous state based on exemplars and image data. h
computes observation from system state. wt and vt represent
process noise and observation noise respectively.

The details are given as follows; the posterior distribu-
tion is empirically represented by a weighted sum of Np

samples drawn from the posterior distribution

pðxt jZt ; exemplars; I1:tÞ �
1
Np

∑
Np

i ¼ 1
δðxt�xðiÞ

t Þ � p̂ðxt Zt ; exemplars; I1:tÞ
��

ð4Þ

where δðxÞ ¼
0; xa0

þ1; x¼ 0

(
and

R þ1
�1 δðxÞdx¼ 1, xðiÞ

t are

assumed to be identically and independently distributed
(i.i.d.) particles drawn from pðxt jZt ; exemplars; I1:tÞ. Np is
the number of particles. When Np is sufficiently large,



Frame #153

Frame #183

Frame #179

Frame #190
Fig. 8. Tracking results by EC-PF at Frame #153, #179, #183 and #190 under the condition of sudden change in human velocity.

Frame #153

Frame #183

Frame #179

Frame #190
Fig. 9. Tracking results by annealed particle filter at Frame #153, #179, #183 and #190 under the condition of sudden change in human velocity.
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Fig. 10. Tracking error under the condition of sudden change in human
velocity: (a) tracking error by EC-PF and (b) tracking error by annealed
particle filter.
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p̂ðxt jZt ; exemplars; I1:tÞ approximates the true posterior
pðxt jZt ; exemplars; I1:tÞ.

Since it is usually impossible to sample from the true
position, it is common to sample from an easy-to-implement
distribution, the so-called proposal distribution denoted by
qðxt jZt ; exemplars; I1:tÞ. Hence, we can estimate the mean of
system state

Ε xt½ � ¼
Z

xt
pðxt jZt ; exemplars; I1:tÞ
qðxt jZt ; exemplars; I1:tÞ

qðxt Zt ; exemplars; I1:tÞdxt
��

¼
Z

xt
ωtðxtÞ

pðZt jexemplars; I1:tÞ
qðxt Zt ; exemplars; I1:tÞdxt

��
¼ 1
pðZt jexemplars; I1:tÞ

Z
xtωtðxtÞqðxt jZt ; exemplars; I1:tÞdxt

ð5Þ
where

ωtðxtÞ ¼
pðZt jxt ; exemplars; I1:tÞpðxt jexemplars; I1:tÞ

qðxt jZt ; exemplars; I1:tÞ

Eq. (5) can be rewritten as

Ε xt½ � ¼
R
xtωtðxtÞqðxt jZt ; exemplars; I1:tÞdxtR

pðZt jxt ; exemplars; I1:tÞpðxt jexemplars; I1:tÞdxt

¼
R
xtωtðxtÞqðxt jZt ; exemplars; I1:tÞdxtR
ωtðxtÞqðxt jZt ; exemplars; I1:tÞdxt
¼Εqðxt jZt ;exemplars;I1:t Þ½xtωtðxtÞ�
Εqðxt jZt ;exemplars;I1:t Þ½ωtðxtÞ�

ð6Þ

By drawing the i.i.d. particles fxðiÞ
t g from qðxt jZt ;

exemplars; I1:tÞ, we can approximate Eq. (6) by

Ε xt½ � � ð1=NPÞ∑Np

i ¼ 1x
ðiÞ
t ωtðxðiÞ

t Þ
ð1=NPÞ∑Np

i ¼ 1ωtðxðiÞ
t Þ

¼ ∑
Np

i ¼ 1
eωtðxðiÞ

t ÞxðiÞ
t ð7Þ

To construct a recursive expression of proposed particle
filter, the proposal distribution qðxt jZt ; exemplars; I1:tÞ is
assumed to have the following form:

qðx0:t jZt ; exemplars; I1:tÞ ¼ qðxt jx0:t�1;Zt ; exemplars; I1:tÞq
ðx0:t�1jZt�1; exemplars; I1:t�1Þ
Thus the importance weight ωtðxðiÞ

t Þ can be updated
recursively

ωtðxðiÞ
t Þ ¼ωt�1ðxðiÞ

t�1Þ
pðzt jxðiÞ

t ; exemplars; I1:tÞpðxðiÞ
t jxðiÞ

t�1; exemplars; I1:tÞ
qðxðiÞ

t jxðiÞ
t�1;Zt ; exemplars; I1:tÞ

ð8Þ
The proposal distribution here is defined as

qðxt jxt�1;Zt ; exemplars; I1:tÞ ¼ pðxt jxt�1; exemplars; I1:tÞ
Thus Eq. (8) is transformed to

ωtðxðiÞ
t Þ ¼ωt�1ðxðiÞ

t�1Þpðzt jxðiÞ
t ; exemplars; I1:tÞ ð9Þ

The problem of this filter is that the distribution of
importance weights becomes more and more skewed as
time increases. This phenomenon is called weight degen-
eracy or sample impoverishment. To monitor how bad the
weight degeneration is, a measure for degeneracy called
effective sample size Nef f is introduced,

Nef f ¼
1

∑Np

i ¼ 1ðωkðxðiÞ
k ÞÞ2

If Nef f is less than a predefined threshold NT (usually
Np=2 or Np=3), resampling operation should be performed.
The whole process of EC-PF is described in Table 1.

Compared with classic particle filters, the dynamic
model in EC-PF is not predefined or assumed to be only
suitable
for smooth motion. EC-PF performs more accurately in
prediction, especially under conditions such as abrupt
velocity changes, due to the introduction of conditioning
with respect to exemplars and image data. The process of
EC-PF is shown in Fig. 3.

4. 3D human motion tracking

This section describes, in detail, the proposed 3D human
motion tracking method based on EC-PF discussed in
Section 3.2. Firstly, 3D human model and relative motion
parameters applied in this method are presented and
explained. Then, techniques in 3D human motion tracking
by using EC-PF are described, such as shape context-
based method for estimating dynamic model in prediction
phase and likelihood measurement for evaluating similarity
between the human pose and human profile in image.



Frame #20

Frame #80

Frame#50

Frame#120
Fig. 11. Tracking results by EC-PF at Frame #20, #50, #80 and #120 in the case of using low-frame rate camera.

Frame #20

Frame #80 Frame#120

Frame#50

Fig. 12. Tracking results by annealed particle filter at Frame #20, #50, #80 and #120 in the case of using low-frame rate camera.
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Fig. 13. Tracking error in the case of using low-frame rate camera:
(a) tracking error by EC-PF and (b) tracking error by annealed particle
filter.
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4.1. 3D human model

A 3D human body model used in this paper is built to
simulate human pose based on the framework of a kine-
matic chain (shown in Fig. 4(a)). The 3D human body
model consists of 10 rigid segments connected by joints,
including a head, a torso, two upper arms, two lower arms,
two thighs and two legs, and each segment is depicted by
a cylinder. Every two adjacent segments are connected via
a joint (see Fig. 4(b)).

Six degrees of freedom are given to translation and
rotation of the human global parameters. Each limb has a
local coordinate system with Z-axis directed along the
limb. Rigid transformations are used to specify relative
positions and orientations of each limb. 3D rotation is
given to thighs, upper arms and head. 1D rotation is
assigned for calves and lower arms. This results in a model
with 25 degrees of freedom and the corresponding human
state vector is denoted as x¼ ðx1 ⋯ x25ÞT.

The relative lengths of segments in the human model
are predefined based on measurements of an average
human body. The value of each body segment used in this
paper is indicated in Table 2.
4.2. Prediction step

In prediction phase, the human motion function
f exemplars;I1:t is first estimated from previous human pose,
image data and exemplars. The key step is to construct
correspondences from image data and exemplars. In
recent years, a number of research was done on object
correspondence construction. Yu et al. [32,33] proposed a
semisupervised patch alignment framework and a semi-
supervised multiview subspace learning algorithm for
object correspondence construction. In this paper, the 3D
human body configuration method using shape contexts
[6] is applied to estimate current human pose.

The process consists of several steps which are
described as follows:
1.
 A shortlist of 2D exemplars with prior knowledge is built.

2.
 Human body edges are extracted from current frame,

points are sampled along edges and shape context
features are constructed.
3.
 Current frame is compared with exemplars using shape
context matching method to derive joints' locations.
4.
 3D human pose is reconstructed based on derived
joints' locations and predefined kinetic information.

4.2.1. Shape context
Shape context is a rich descriptor in shape matching

and used to find the correspondences between exemplars
and current frame. Shapes of 2D human are represented by
a discrete set of n points Ρ¼ fp1;…;png, piAℜ2, which are
sampled from contours of the shape. The descriptor for a

point pi is the histogram ĥi ¼ ðĥ1
i ;…; ĥ

d

i Þ for d log-polar
histogram bins [34]:

ĥ
k

i ¼∑qj AQ tj; where Q ¼ fqjapi; ðqj�piÞAbinðkÞg ð10Þ

tj is a unit length tangent vector and it is along the direction

of the edge at qj. In each histogram bin ĥ
k

i , the descriptor is
calculated by summing the tangent vectors for all points
falling in the bin. An example of shape contexts is shown in
Fig. 5.

Each bin holds a single vector in the direction of the
dominant orientation of edges in the bin. We compare two
histograms at point pi and point qi using a distance as

dðpi;qiÞ ¼
1
2
∑binsðkÞ

jjĥk
i � ĥ

k
j jj2

jjĥk

i jjþjjĥk

j jj
ð11Þ

Bipartite graph matching method is used to compare all
pairs of points pi sampled from current frame and qi from
exemplars. The target is to minimize the total cost of
matching

HðπÞ ¼∑
i
dðpi;qπðiÞÞ ð12Þ

where pi is a point on the shape extracted from current
frame, qi is on the shape derived from an exemplar, π is a
permutation. This problem can be solved by using Hungar-
ian method [35].



Fig. 15. Tracking results by EC-PF at Frame #485, #500, #515 and #530 in the case of sudden change in human velocity.

Fig. 14. Some tracking results by the baseline algorithm at Frame #485, #500, #515 and #530 in the case of sudden change in human velocity.
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4.2.2. 3D human pose recovery
Once the best exemplar is chosen by comparing with

current frame, the deformation model proposed in [6] is used
to do deformation. Based on the image coordinates of joint
points, Taylor's method [36] is then applied to estimate 3D
human pose. Fig.6 shows the projection of two perpendicular
line segments, whose lengths are l1 and l2, onto image plane
by projective projection.

In this case, for line segment AB with known length l1, the
projection of two end points,ðx1; y1; z1Þ and ðx2; y2; z2Þ onto
image plane are represented by ðu1; v1Þ and ðu2; v2Þ respec-
tively. For line segment AC, the projections of two end points
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Fig. 16. Tracking error in the case of sudden change in human velocity: (a)
tracking error by the baseline algorithm and (b) tracking error by EC-PF.
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ðx1; y1; z1Þ and ðx3; y3; z3Þ are ðu1; v1Þ and ðu3; v3Þ respectively.
Assume the scale factors of the three end points are known as
s1,s2 and s3, it would be simple to compute the relative depth
of the two end points. We have

l21 ¼ ðx1�x2Þ2þðy1�y2Þ2þðz1�z2Þ2

l22 ¼ ðx1�x3Þ2þðy1�y3Þ2þðz1�z3Þ2

ðx1; y1; z1Þ ¼
u1

s1
;
v1
s1
;
f
s1

� �
ðx2; y2; z2Þ ¼

u2

s2
;
v2
s2
;
f
s2

� �
ðx3; y3; z3Þ ¼

u3

s3
;
v3
s3
;
f
s3

� �
where f is the camera focal length which is known.
Moreover, the two line segments are perpendicular.
So

ðx1�x2Þðx1�x3Þþðy1�y2Þðy1�y3Þþðz1�z2Þðz1�z3Þ ¼ 0

ð13Þ
The relative depth information between two end points
is derived from the matched exemplar, for example,

z1oz2 and z1oz3

According to the above equations and inequalities, s1,s2
and s3 can be derived. The 3D coordinates of the three end
points can be computed. In the human model (see Fig. 4
(a)), segment j1j8 is always perpendicular to segment j9j12.
Base on the projected image coordinates of the joints, the
unknown scale used in [6] can be computed. Therefore
other joints' locations can be derived accordingly.

Then Euler angles of relevant joints are calculated by
using Inverse Kinemics (IK) based on the obtained 3D joint
coordinates to estimate human body states.

Assume that previous state is x̂t�1, human pose derived
by above method is x̂matched;t , the motion transition func-
tion f exemplars;I1:t can be computed by solving the following
equation:

x̂matched;t ¼ f exemplars;I1:t ðx̂t�1Þ

The motion transition function f exemplars;I1:t is then used to
direct importance sampling. Because f exemplars;I1:t describes
how the human moves from previous pose to current pose,
prediction accuracy by applying f exemplars;I1:t will be improved
especially in the case of sudden change in motion velocity. For
each particle, it will be predicted as

x̂ðiÞ
t ¼ f exemplars;I1:t ðx̂

ðiÞ
t�1Þ
4.3. Likelihood measurement function

For each particle, a likelihood measure needs to be
computed to estimate how well the projection of a given
human body pose fits the observation. Two image features,
edges and silhouette (see Fig. 7), are chosen to construct
the likelihood measurement function.

Edges produced by a human subject in an image usually
provide a good outline of visible arms and legs, and they are
mostly invariant to color, texture and lighting. In most
situations, edges provide a good measurement for the like-
lihood function. A gradient-based edge detection mask is used
to detect edges. The result is thresholded to eliminate spurious
edges, smoothed with a Gaussian mask. The example edge
image by this method is shown in Fig. 7(b). A sum-squared
difference (SSD) function SSDðX;ZÞ is computed as

SSDeðX;ZeÞ ¼ 1
N1

∑
N1

i ¼ 1
ð1�pi

eðX;ZeÞÞ2 ð14Þ

where X is the projection of the humanmodel onto the image
plane and Ze is the image edge image. pieðX;ZeÞ is the value of
edge map at the sampling points taken along the model's
edge at point i. N1 is the number of foreground points.

Another feature extracted from current frame is silhou-
ette, which has been generated by learning a Gaussian
mixture model for each pixel over background images and
comparing the background pixel probability with that of a
uniform foreground model. The value of foreground pixels
is set to 1 and background to 0. This time, another SSD



Fig. 17. Some tracking results by the baseline algorithm at Frame #485, #500, #515 and #530 in the case of in the case of using low-frame rate camera.

Fig. 18. Tracking results by EC-PF at Frame #485, #500, #515 and #530 in the case of using low-frame rate camera.
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function is constructed as

SSDsðX;ZsÞ ¼ 1
N2

∑
N2

i ¼ 1
ð1�pi

sðX;ZsÞÞ2 ð15Þ

where pi
sðX;ZsÞ is the value of the sampling point i. To

combine these two features, the weight function is proposed as

ωðX;ZÞ ¼ expð�ððSSDeðX;ZeÞþSSDsðX;ZsÞÞÞ ð16Þ
The entire process of the proposed 3D human tracking
algorithm is demonstrated in Table 3.

5. Experiments and discussion

To demonstrate the robustness of EC-PF to sudden change
in human velocity and low frame rate, Brown dataset
[37] and HumanEva dataset [38] were used for testing.
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Fig. 19. Tracking error in the case of using low-frame rate camera: (a)
tracking error by the baseline algorithm and (b) tracking error by EC-PF.
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When experiments were conducted on Brown dataset,
performances of EC-PF and annealed particle filter were
compared. When experiments were conducted on Huma-
nEva dataset, performance of EC-PF was compared with the
baseline algorithm in [38].

5.1. Brown dataset

The images from Brown dataset were taken with four
synchronized cameras at 60 Hz, and the provided information
includes camera calibration parameters, binary maps for
foreground silhouettes, and motion capture data. Motion
capture data was collected using a six-camera Vicon system
at 120 Hz. Image data and motion capture data were then
synchronized in software. Motion capture data was processed
separately to obtain body model parameters and ground truth
values for joint angles, position and orientation. In this
experiment, only images captured from the first camera was
used for testing the performance of EC-PF.

A portion of a circular walking sequence was selected from
Brown dataset. From this sequence, a set of 400 exemplars
was pruned to a shortlist of representative shape contexts
with manually added prior information such as joint relative
locations. The program was written in Matlab and run on a
Dell desktop with Intel Core i7 3.07 GHz CPU and 4 GB
memory.

5.1.1. Sudden change in human motion velocity
To test the performance of EC-PF and APF under the

condition of sudden change in human velocity, some inter-
mediate frames from chosen image sequence were omitted to
simulate such situation. In this experiment, the first 200
frames in Brown dataset were selected by deleting Frame
nos. 154–178. The tracking results by EC-PF and original
annealed particle filter are given in Figs. 8 and 9 respectively.
For annealed particle filter, four cameras were used while one
camera was used for EC-PF.

Fig. 8 displays some of the output poses estimated by EC-
PF. Experiments shows that EC-PF could effectively track 3D
human motion under the condition of sudden human velocity
change. In contrast, annealed particle filter failed to track the
human motion (see Fig. 9).

Fig. 10 shows the tracking errors by annealed particle
filter and EC-PF. Before Frame no. 154, both algorithms
worked fine with error less than 100 mm. However, after
Frame no. 178 when a sudden change in human velocity
occurred, the resulting error of annealed particle filter is
almost 400 mm, while that of EC-PF is still satisfactory.

5.1.2. Low frame rate
To test the performance of EC-PF and APF when low-

frame rate camera is used, testing frames were re-sampled
every 4 frames from the original image sequence. Thus, the
new image sequence is at 15 Htz. The tracking results by
EC-PF and original annealed particle filter are shown in
Figs. 11 and 12 respectively. Annealed particle filter failed
to track the subject while EC-PF still tracked the human
correctly in such condition.

Comparison of tracking errors between EC-PF and
annealed particle filter is given in Fig. 13. The resulting
error by annealed particle filter increases to around
1600 mm, while error by EC-PF is less than 140 mm.

5.2. HumanEva dataset

HumanEva datasets [38] contain multiple subjects
performing a set of predefined actions with a number of
repetitions. Multi-view video sequences were collected at
60 Hz and synchronized with 3D body poses obtained
from a motion capture system. In this section, experiments
were conducted on HumanEva-II dataset by using EC-PF
and the baseline algorithm [38] separately.

5.2.1. Sudden change in human motion velocity
To compare performances of EC-PF with the baseline

algorithm under the condition of sudden change in human
velocity, Frame nos. 450–680 in HumanEva-II were chosen
for experiments and Frame nos. 460–480 were omitted to
simulate such condition. Tracking results by EC-PF and the
baseline algorithm are given in Figs. 14 and 15 respectively.
From the obtained results, the estimated human body by
EC-PF is close to ground truth, while the baseline algo-
rithm gives a wrong estimation of human pose.
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Fig. 16 shows the comparison of tracking error by EC-PF
and the baseline algorithm. From the results, EC-PF out-
performs the baseline algorithm by giving less error.
5.2.2. Low frame rate
The same frame re-sampling method as described in

Section 5.1.2 was used here. Some tracking results by the
baseline algorithm and EC-PF are given in Figs. 17 and 18
respectively. We note that human poses generated by the
baseline algorithm are quite different from ground truth while
proposed EC-PF still tracked correctly.

Fig. 19 presents errors of human pose derived by the
baseline algorithm and EC-PF when a low-frame-rate
image sequence was used. The results show that EC-PF is
more robust to low frame rate than the baseline algorithm.
6. Conclusion

Particle filter is an effective framework for 3D human
motion tracking. Researchers have improved particle filters,
such as annealed particle filter and progressive particle filter,
to reduce computational burden and improve tracking
accuracy. However, the problem of needs for sampling
particles in a large enough uncertainty area due to low
prediction accuracy remains, especially in cases where
sudden human velocity change exists or low frame rate
camera is used. Targeting this issue, EC-PF is proposed by
introducing a conditional system states with respect to
image data and exemplars. In order to obtain 3D poses, an
exemplar-based dynamic model is constructed to guide
human motion prediction so that particles are able to evolve
within an area close to true state. Therefore, this approach is
robust to usage of low frame rate camera and sudden motion
change of subject. Moreover, by adopting shape context-
based exemplar matching, proposed 3D motion tracking
approach EC-PF can be effectively achieved with a monocular
camera setup, which suggests a better potential for future
applications in real world.
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